login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220641
Number of ways to reciprocally link elements of an n X 5 array either to themselves or to exactly one king-move neighbor.
2
1, 8, 728, 37320, 2226936, 128171936, 7444342896, 431408410784, 25014514225856, 1450226501771584, 84080327982982848, 4874715696405194752, 282621433306639435392, 16385536749696632356608, 949984033027704106955264, 55077209132605857634211328
OFFSET
0,2
COMMENTS
Column 5 of A220644.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300 (terms n = 1..210 from R. H. Hardin)
FORMULA
Empirical: a(n) = 48*a(n-1) +694*a(n-2) -6232*a(n-3) -31552*a(n-4) +254384*a(n-5) +127448*a(n-6) -2270720*a(n-7) +175600*a(n-8) +6932672*a(n-9) -38400*a(n-10) -7223680*a(n-11) -640000*a(n-12) +1681408*a(n-13) +237568*a(n-14) +192512*a(n-15) -16384*a(n-16) +32768*a(n-17).
G.f.: see Maple program. - Alois P. Heinz, Jun 03 2014
EXAMPLE
Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..6..4..9..0....6..4..0..0..7....0..9..0..6..4....0..7..6..4..0
..6..4..0..8..1....0..7..7..3..0....0..7..1..0..0....3..9..0..9..0
..0..0..0..2..0....3..3..0..0..0....3..0..0..6..4....0..0..1..0..1
MAPLE
gf:= -(4096*x^15 -4096*x^14 +31232*x^13 +42240*x^12 +242304*x^11 -32896*x^10 -801152*x^9 -74640*x^8 +473568*x^7 -18040*x^6 -86144*x^5 +11752*x^4 +3056*x^3 -350*x^2 -40*x+1) / (32768*x^17 -16384*x^16 +192512*x^15 +237568*x^14 +1681408*x^13 -640000*x^12 -7223680*x^11 -38400*x^10 +6932672*x^9 +175600*x^8 -2270720*x^7 +127448*x^6 +254384*x^5 -31552*x^4 -6232*x^3 +694*x^2 +48*x-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 03 2014
CROSSREFS
Sequence in context: A071308 A046188 A014387 * A017007 A268250 A268106
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 17 2012
STATUS
approved