login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to reciprocally link elements of an n X 6 array either to themselves or to exactly one king-move neighbor.
2

%I #11 Nov 03 2023 15:43:20

%S 1,13,3096,373177,53841725,7444342896,1040315976961,145000880411157,

%T 20223491612180232,2820152941289640505,393283923444213896309,

%U 54844809649495130675968,7648317475647716579501281,1066586359952790876210231837,148739462164292054050115639320

%N Number of ways to reciprocally link elements of an n X 6 array either to themselves or to exactly one king-move neighbor.

%C Column 6 of A220644.

%H Alois P. Heinz, <a href="/A220642/b220642.txt">Table of n, a(n) for n = 0..300</a> (terms n = 1..210 from R. H. Hardin)

%F Empirical: a(n) = 114*a(n-1) +4256*a(n-2) -91572*a(n-3) -1178554*a(n-4) +30456760*a(n-5) -130975946*a(n-6) -821286442*a(n-7) +8116096176*a(n-8) -10363446884*a(n-9) -106454109710*a(n-10) +356958898120*a(n-11) +328038015993*a(n-12) -2687705043916*a(n-13) +1546010691232*a(n-14) +7214129736088*a(n-15) -10475377691972*a(n-16) -2990479177712*a(n-17) +18333779754964*a(n-18) -16202802907924*a(n-19) -5141934133696*a(n-20) +21799390094104*a(n-21) -11778527057052*a(n-22) -4558878158992*a(n-23) +6009171204129*a(n-24) -2343244613126*a(n-25) +703880375232*a(n-26) +353889755932*a(n-27) -387967483426*a(n-28) +53576735032*a(n-29) -17639703466*a(n-30) -2578302306*a(n-31) -976631280*a(n-32) +921279564*a(n-33) -56415798*a(n-34) -4701240*a(n-35) -552825*a(n-36).

%F G.f.: see Maple program. - _Alois P. Heinz_, Jun 03 2014

%e Some solutions for n=3 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)

%e ..0..7..8..6..4..8....0..7..7..0..0..8....0..9..6..4..7..0....0..0..7..9..0..0

%e ..3..9..2..0..0..2....3..3..0..6..4..2....8..9..1..3..0..8....0..3..0..0..1..8

%e ..0..0..1..0..0..0....6..4..0..6..4..0....2..0..1..0..0..2....0..0..0..0..0..2

%p gf:= -(42525*x^34 +364905*x^33 +4427406*x^32 -69988761*x^31 +75088869*x^30 +126251376*x^29 +1409947907*x^28 -3807220353*x^27 +31562787626*x^26 -34451027911*x^25 -29205077493*x^24 +161219121840*x^23 -514135270654*x^22 +487268729962*x^21 +681687943708*x^20 -1511580215802*x^19 +660828588610*x^18

%p +669167562768*x^17 -1110589682746*x^16 +414093064814*x^15 +401344851300*x^14 -357570201838*x^13 -8972200506*x^12 +82109485328*x^11 -17558268975*x^10 -5482245411*x^9 +2504769654*x^8 -169204765*x^7 -66910711*x^6 +13483712*x^5 -491961*x^4 -56477*x^3 +2642*x^2 +101*x -1) / (552825*x^36 +4701240*x^35 +56415798*x^34 -921279564*x^33 +976631280*x^32 +2578302306*x^31

%p +17639703466*x^30 -53576735032*x^29 +387967483426*x^28 -353889755932*x^27 -703880375232*x^26 +2343244613126*x^25 -6009171204129*x^24 +4558878158992*x^23 +11778527057052*x^22 -21799390094104*x^21 +5141934133696*x^20 +16202802907924*x^19 -18333779754964*x^18

%p +2990479177712*x^17 +10475377691972*x^16 -7214129736088*x^15 -1546010691232*x^14 +2687705043916*x^13 -328038015993*x^12 -356958898120*x^11 +106454109710*x^10 +10363446884*x^9 -8116096176*x^8 +821286442*x^7 +130975946*x^6 -30456760*x^5 +1178554*x^4 +91572*x^3 -4256*x^2 -114*x +1):

%p a:= n-> coeff(series(gf, x, n+1), x, n):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jun 03 2014

%K nonn

%O 0,2

%A _R. H. Hardin_, Dec 17 2012