login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206154
a(n) = Sum_{k=0..n} binomial(n,k)^(k+2).
4
1, 2, 10, 110, 2386, 125752, 14921404, 3697835668, 2223231412546, 3088517564289836, 9040739066816429380, 63462297965044771663708, 1064766030857977088480630740, 37863276208844960432962611293828, 3144384748384240804260912067907833280
OFFSET
0,2
COMMENTS
Ignoring initial term a(0), equals the logarithmic derivative of A206153.
FORMULA
Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.53362806511..., where r = 0.70350607643... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Jan 29 2014
EXAMPLE
L.g.f.: L(x) = 2*x + 10*x^2/2 + 110*x^3/3 + 2386*x^4/4 + 125752*x^5/5 +...
where exponentiation yields A206151:
exp(L(x)) = 1 + 2*x + 7*x^2 + 48*x^3 + 693*x^4 + 26632*x^5 + 2542514*x^6 +...
Illustration of initial terms:
a(1) = 1^2 + 1^3 = 2;
a(2) = 1^2 + 2^3 + 1^4 = 10;
a(3) = 1^2 + 3^3 + 3^4 + 1^5 = 110;
a(4) = 1^2 + 4^3 + 6^4 + 4^5 + 1^6 = 2386;
a(5) = 1^2 + 5^3 + 10^4 + 10^5 + 5^6 + 1^7 = 125752; ...
MATHEMATICA
Table[Sum[Binomial[n, k]^(k+2), {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Jan 16 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^(k+2))}
for(n=0, 16, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved