This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206157 G.f.: exp( Sum_{n>=1} A206158(n)*x^n/n ), where A206158(n) = Sum_{k=0..n} binomial(n,k)^(2*k+1). 3
 1, 2, 7, 102, 6261, 2423430, 6686021554, 61335432894584, 2941073857435300366, 1190520035262419577871332, 1696475310227140760623646031573, 9980324833243234634513255755001535870, 565171444566758371735408026461987217216896790 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Logarithmic derivative yields A206158. LINKS EXAMPLE G.f.: A(x) = 1 + 2*x + 7*x^2 + 102*x^3 + 6261*x^4 + 2423430*x^5 +... where the logarithm of the g.f. begins: log(A(x)) = 2*x + 10*x^2/2 + 272*x^3/3 + 24226*x^4/4 + 12053252*x^5/5 + 40086916024*x^6/6 +...+ A206158(n)*x^n/n +... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m, k)^(2*k+1))+x*O(x^n))), n)} for(n=0, 16, print1(a(n), ", ")) CROSSREFS Cf. A206158 (log), A184730, A206153, A206155, A206151. Sequence in context: A219280 A192342 A102598 * A102747 A122524 A229165 Adjacent sequences:  A206154 A206155 A206156 * A206158 A206159 A206160 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .