login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066205
a(n) = Product_{k=1..n} prime(2k-1), where prime(k) is k-th prime.
28
2, 10, 110, 1870, 43010, 1333310, 54665710, 2569288370, 151588013830, 10156396926610, 741416975642530, 61537608978329990, 5969148070898009030, 614822251302494930090, 67015625391971947379810, 8510984424780437317235870, 1166004866194919912461314190
OFFSET
1,1
COMMENTS
Equivalently, a(n) is the product of the first n odd-indexed primes. - Jon E. Schoenfield, Jan 12 2022
LINKS
EXAMPLE
a(3) = prime(1) * prime(3) * prime(5) = 2 * 5 * 11 = 110.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1)*ithprime(2*n-1))
end:
seq(a(n), n=1..17); # Alois P. Heinz, Jan 12 2022
MATHEMATICA
FoldList[Times, Array[Prime[2 # - 1] &, 17]] (* Michael De Vlieger, Jan 12 2022 *)
PROG
(PARI) { for (n=1, 100, p=1; for (k=1, n, p*=prime(2*k - 1)); write("b066205.txt", n, " ", p) ) } \\ Harry J. Smith, Feb 05 2010
(PARI) a(n) = prod(k=1, n, prime(2*k-1)); \\ Michel Marcus, Jan 13 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 16 2001
STATUS
approved