login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095776
Expansion of (1-9x-27x^3)^(-1/3).
0
1, 3, 18, 135, 1053, 8505, 70470, 594135, 5073840, 43761870, 380433024, 3328474032, 29276671347, 258669163665, 2294194659012, 20415148177023, 182191712018409, 1630078264917999, 14617308518871210, 131341152706852599
OFFSET
0,2
FORMULA
G.f.: g(x) = (1-9x-27x^3)^(-1/3).
D-finite diff. eq.: 3*(1-9x-27x^3)*g'(x) - (-1)*(-9-27x^2)*g(x) = 0. - Georg Fischer, Jan 15 2020
D-finite with recurrence: n*a(n) -3*(3*n-2)*a(n-1) -27*(n-2)*a(n-3)=0. - Georg Fischer, Jan 15 2020
MAPLE
f:= gfun:-rectoproc({a(0)=1, a(1)=3, a(2)=18, 1*(3*n-0)*a(n) + (-9)*(3*n-2)*a(n-1) + 0 + (-27)*(3*n-6)*a(n-3) = 0}, a(n), remember): map(f, [$0..30]); # from the differential equation - Georg Fischer, Jan 15 2020
MATHEMATICA
CoefficientList[Series[(1-9x-27x^3)^(-1/3), {x, 0, 30}], x] (* Harvey P. Dale, Aug 22 2014 *)
PROG
(PARI) a(n)=polcoeff(1/(1-9*x-27*x^3)^(1/3)+O(x^(n+1)), n)
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-9*x-27*x^3)^(-1/3))); // Marius A. Burtea, Jan 15 2020
CROSSREFS
Sequence in context: A251733 A355103 A355105 * A114178 A005159 A151383
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jun 05 2004
EXTENSIONS
Offset 0 from Georg Fischer, Jan 15 2020
STATUS
approved