login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098400
a(n) = 4^n*binomial(2*n+1, n).
6
1, 12, 160, 2240, 32256, 473088, 7028736, 105431040, 1593180160, 24216338432, 369849532416, 5671026163712, 87246556364800, 1346089726771200, 20819521107394560, 322702577164615680, 5011381198321090560, 77954818640550297600, 1214454016715941478400
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-sqrt(1-16*x))/(8*x*sqrt(1-16*x)).
E.g.f.: a(n) = n! * [x^n] exp(8*x)*(BesselI(0, 8*x) + BesselI(1, 8*x)). - Peter Luschny, Aug 25 2012
(n+1)*a(n) - 8*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 26 2012
a(n) = 4^n*(2*n+1)*Hypergeometric2F1([1-n,-n],[2],1). - Peter Luschny, Sep 22 2014
From G. C. Greubel, Dec 27 2023: (Start)
a(n) = 4^n * A001700(n).
a(n) = 4^n * (2*n+1) * A000108(n).
a(n) = (2*n+1) * A151403(n). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 8/15 + 128*arcsin(1/4)/(15*sqrt(15)).
Sum_{n>=0} (-1)^n/a(n) = 8/17 + 128*arcsinh(1/4)/(17*sqrt(17)). (End)
MATHEMATICA
Table[4^n Binomial[2n+1, n], {n, 0, 20}] (* Harvey P. Dale, Jan 22 2019 *)
PROG
(PARI) a(n)=binomial(2*n+1, n)<<(2*n) \\ Charles R Greathouse IV, Oct 23 2023
(Magma) [4^n*(2*n+1)*Catalan(n): n in [0..30]]; // G. C. Greubel, Dec 27 2023
(SageMath) [4^n*binomial(2*n+1, n) for n in range(31)] # G. C. Greubel, Dec 27 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 06 2004
STATUS
approved