|
|
A024463
|
|
a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n+1-k), where k = [ (n+1)/2 ], s = (Fibonacci numbers), t = (odd natural numbers).
|
|
0
|
|
|
1, 3, 8, 12, 26, 34, 63, 77, 136, 160, 272, 312, 521, 587, 968, 1076, 1762, 1938, 3159, 3445, 5600, 6064, 9840, 10592, 17169, 18387, 29784, 31756, 51418, 54610, 88399, 93565, 151432, 159792, 258592, 272120, 440345, 462235, 747960, 783380, 1267586
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..41.
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,3,-2,-1,4,-3,2,-1).
|
|
FORMULA
|
G.f.:(1-5*x^5+3*x^4-3*x^3+x^2+x)/((x-1)^2*(x^4+x^2-1)^2) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]
|
|
CROSSREFS
|
Sequence in context: A123906 A065970 A326890 * A092954 A114803 A083171
Adjacent sequences: A024460 A024461 A024462 * A024464 A024465 A024466
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|