OFFSET
1,2
COMMENTS
To get a permutation of a tree, we choose a permutation of the multiset of branches of each node.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
EXAMPLE
The terms together with their corresponding trees begin:
1: o
6: (o(o))
12: (oo(o))
24: (ooo(o))
30: (o(o)((o)))
48: (oooo(o))
60: (oo(o)((o)))
72: (ooo(o)(o))
104: (ooo(o(o)))
120: (ooo(o)((o)))
144: (oooo(o)(o))
148: (oo(oo(o)))
156: (oo(o)(o(o)))
180: (oo(o)(o)((o)))
192: (oooooo(o))
222: (o(o)(oo(o)))
288: (ooooo(o)(o))
312: (ooo(o)(o(o)))
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]
MGTree[n_Integer]:=If[n===1, {}, MGTree/@primeMS[n]]
treeperms[t_]:=Times@@Cases[t, b:{__}:>Length[Permutations[b]], {0, Infinity}];
fir[q_]:=Select[Range[Length[q]], !MemberQ[Take[q, #-1], q[[#]]]&];
fir[Table[treeperms[MGTree[n]], {n, 100}]]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 20 2022
STATUS
approved