OFFSET
0,2
COMMENTS
This sequence maps A000108(n) oriented (plane) rooted general trees encoded in range [A014137(n-1)..A014138(n)] of A014486 to A000081(n+1) distinct non-oriented rooted general trees, encoded by their Matula-Goebel numbers. The latter encoding is explained in A061773.
Primes occur at positions given by A057548 (not in order, and with duplicates), and similarly, semiprimes, A001358, occur at positions given by A057518, and in general, A001222(a(n)) = A057515(n).
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127301(SP(n)) = A127301(n) for all n, then it preserves the non-oriented form of a general tree, which implies also that it is Łukasiewicz-word permuting, satisfying A129593(SP(n)) = A129593(n) for all n >= 0. Examples of such automorphisms include A072796, A057508, A057509/A057510, A057511/A057512, A057164, A127285/A127286 and A127287/A127288.
A206487(n) tells how many times n occurs in this sequence. - Antti Karttunen, Jan 03 2013
LINKS
EXAMPLE
A000081(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, A014486(5) = 44 (= 101100 in binary = A063171(5)), encodes the following plane tree:
.....o
.....|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(1) * A000040(A000040(1)) = 2*3 = 6, thus a(5)=6.
.o
.|
.o...o
..\./.
...*..
MATHEMATICA
mgnum[t_]:=If[t=={}, 1, Times@@Prime/@mgnum/@t];
binbalQ[n_]:=n==0||With[{dig=IntegerDigits[n, 2]}, And@@Table[If[k==Length[dig], SameQ, LessEqual][Count[Take[dig, k], 0], Count[Take[dig, k], 1]], {k, Length[dig]}]];
bint[n_]:=If[n==0, {}, ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n, 2]/.{1->"{", 0->"}"}], ", "->""], "} {"->"}, {"]]];
Table[mgnum[bint[n]], {n, Select[Range[0, 1000], binbalQ]}] (* Gus Wiseman, Nov 22 2022 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 16 2007
STATUS
approved