|
|
A127302
|
|
Matula-Goebel signatures for plane binary trees encoded by A014486.
|
|
16
|
|
|
1, 4, 14, 14, 86, 86, 49, 86, 86, 886, 886, 454, 886, 886, 301, 301, 301, 886, 886, 301, 454, 886, 886, 13766, 13766, 6418, 13766, 13766, 3986, 3986, 3986, 13766, 13766, 3986, 6418, 13766, 13766, 3101, 3101, 1589, 3101, 3101, 1849, 1849, 3101, 13766
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This sequence maps A000108(n) oriented (plane) rooted binary trees encoded in range [A014137(n-1)..A014138(n-1)] of A014486 to A001190(n+1) non-oriented rooted binary trees, encoded by their Matula-Goebel numbers (when viewed as a subset of non-oriented rooted general trees). See also the comments at A127301.
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127302(SP(n)) = A127302(n) for all n, then it preserves the non-oriented form of a binary tree. Examples of such automorphisms include A069770, A057163, A122351, A069767/A069768, A073286-A073289, A089854, A089859/A089863, A089864, A122282, A123492-A123494, A123715/A123716, A127377-A127380, A127387 and A127388.
A153835 divides natural numbers to same equivalence classes, i.e. a(i) = a(j) <=> A153835(i) = A153835(j) - Antti Karttunen, Jan 03 2013
|
|
LINKS
|
Table of n, a(n) for n=0..45.
Index entries for sequences related to Matula-Goebel numbers
|
|
FORMULA
|
a(n) = A127301(A057123(n)).
Can be also computed directly as a fold, see the Scheme-program. - Antti Karttunen, Jan 03 2013
|
|
EXAMPLE
|
A001190(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, terms A014486(4..8) encode the following five plane binary trees:
........\/.....\/.................\/.....\/...
.......\/.......\/.....\/.\/.....\/.......\/..
......\/.......\/.......\_/.......\/.......\/.
n=.....4........5........6........7........8..
The trees in positions 4, 5, 7 and 8 all produce Matula-Goebel number A000040(1)*A000040(A000040(1)*A000040(A000040(1)*A000040(1))) = 2*A000040(2*A000040(2*2)) = 2*A000040(14) = 2*43 = 86, as they are just different planar representations of the one and same non-oriented tree. The tree in position 6 produces Matula-Goebel number A000040(A000040(1)*A000040(1)) * A000040(A000040(1)*A000040(1)) = A000040(2*2) * A000040(2*2) = 7*7 = 49. Thus a(4..8) = 86,86,49,86,86.
|
|
PROG
|
(Scheme with Antti Karttunen's IntSeq-library, definition added here Jan 03 2013):
(definec (A127302 n) (*A127302 (A014486->parenthesization (A014486 n))))
(define (*A127302 s) (fold-right (lambda (t m) (* (A000040 (*A127302 t)) (A000040 m))) 1 s))
|
|
CROSSREFS
|
Cf A127301, A153835, A153829.
Sequence in context: A200553 A229392 A229320 * A204541 A020157 A101237
Adjacent sequences: A127299 A127300 A127301 * A127303 A127304 A127305
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Antti Karttunen, Jan 16 2007
|
|
STATUS
|
approved
|
|
|
|