login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057163 Signature-permutation of a Catalan automorphism: Reflect a rooted plane binary tree; Deutsch's 1998 involution on Dyck paths. 168
0, 1, 3, 2, 8, 7, 6, 5, 4, 22, 21, 20, 18, 17, 19, 16, 15, 13, 12, 14, 11, 10, 9, 64, 63, 62, 59, 58, 61, 57, 55, 50, 49, 54, 48, 46, 45, 60, 56, 53, 47, 44, 52, 43, 41, 36, 35, 40, 34, 32, 31, 51, 42, 39, 33, 30, 38, 29, 27, 26, 37, 28, 25, 24, 23, 196, 195, 194, 190, 189 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Deutsch shows in his 1999 paper that this automorphism maps the number of doublerises of Dyck paths to number of valleys and height of the first peak to the number of returns, i.e., that A126306(n) = A127284(a(n)) and A126307(n) = A057515(a(n)) hold for all n.
The A000108(n-2) n-gon triangularizations can be reflected over n axes of symmetry, which all can be generated by appropriate compositions of the permutations A057161/A057162 and A057163.
Composition with A057164 gives signature permutation for Donaghey's Map M (A057505/A057506). Embeds into itself in scale n:2n+1 as a(n) = A083928(a(A080298(n))). A127302(a(n)) = A127302(n) and A057123(A057163(n)) = A057164(A057123(n)) hold for all n.
LINKS
Emeric Deutsch, An involution on Dyck paths and its consequences, Discrete Math., 204 (1999), no. 1-3, 163-166.
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020.
FORMULA
a(n) = A083927(A057164(A057123(n))).
EXAMPLE
This involution (self-inverse permutation) of natural numbers is induced when we reflect the rooted plane binary trees encoded by A014486. E.g., we have A014486(5) = 44 (101100 in binary), A014486(7) = 52 (110100 in binary) and these encode the following rooted plane binary trees, which are reflections of each other:
0 0 0 0
\ / \ /
1 0 0 1
\ / \ /
0 1 1 0
\ / \ /
1 1
thus a(5)=7 and a(7)=5.
MAPLE
a(n) = A080300(ReflectBinTree(A014486(n)))
ReflectBinTree := n -> ReflectBinTree2(n)/2; ReflectBinTree2 := n -> (`if`((0 = n), n, ReflectBinTreeAux(A030101(n))));
ReflectBinTreeAux := proc(n) local a, b; a := ReflectBinTree2(BinTreeLeftBranch(n)); b := ReflectBinTree2(BinTreeRightBranch(n)); RETURN((2^(A070939(b)+A070939(a))) + (b * (2^(A070939(a)))) + a); end;
NextSubBinTree := proc(nn) local n, z, c; n := nn; c := 0; z := 0; while(c < 1) do z := 2*z + (n mod 2); c := c + (-1)^n; n := floor(n/2); od; RETURN(z); end;
BinTreeLeftBranch := n -> NextSubBinTree(floor(n/2));
BinTreeRightBranch := n -> NextSubBinTree(floor(n/(2^(1+A070939(BinTreeLeftBranch(n))))));
MATHEMATICA
A014486Q[0] = True; A014486Q[n_] := Catch[Fold[If[# < 0, Throw[False], If[#2 == 0, # - 1, # + 1]] &, 0, IntegerDigits[n, 2]] == 0]; tree[n_] := Block[{func, num = Append[IntegerDigits[n, 2], 0]}, func := If[num[[1]] == 0, num = Drop[num, 1]; 0, num = Drop[num, 1]; 1[func, func]]; func]; A057163L[n_] := Function[x, FirstPosition[x, FromDigits[Most@Cases[tree[#] /. 1 -> Reverse@*1, 0 | 1, All, Heads -> True], 2]][[1]] - 1 & /@ x][Select[Range[0, 2^n], A014486Q]]; A057163L[11] (* JungHwan Min, Dec 11 2016 *)
PROG
(Scheme implementations of this automorphism that acts on S-expressions, i.e., list-structures:)
(CONSTRUCTIVE IMPLEMENTATION:) (define (*A057163 s) (cond ((not (pair? s)) s) (else (cons (*A057163 (cdr s)) (*A057163 (car s))))))
(DESTRUCTIVE IMPLEMENTATION:) (define (*A057163! s) (cond ((pair? s) (*A069770! s) (*A057163! (car s)) (*A057163! (cdr s)))) s)
CROSSREFS
This automorphism conjugates between the car/cdr-flipped variants of other automorphisms, e.g., A057162(n) = a(A057161(a(n))), A069768(n) = a(A069767(a(n))), A069769(n) = a(A057508(a(n))), A069773(n) = a(A057501(a(n))), A069774(n) = a(A057502(a(n))), A069775(n) = a(A057509(a(n))), A069776(n) = a(A057510(a(n))), A069787(n) = a(A057164(a(n))).
Row 1 of tables A122201 and A122202, that is, obtained with FORK (and KROF) transformation from even simpler automorphism *A069770. Cf. A122351.
Sequence in context: A130360 A082348 A122339 * A130918 A230432 A195305
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2000
EXTENSIONS
Equivalence with Deutsch's 1998 involution realized Dec 15 2006 and entry edited accordingly by Antti Karttunen, Jan 16 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 09:23 EDT 2024. Contains 371782 sequences. (Running on oeis4.)