login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195305
Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(3,4,5).
4
3, 2, 8, 8, 5, 5, 4, 1, 8, 5, 1, 4, 5, 0, 3, 0, 0, 6, 4, 1, 8, 2, 8, 4, 8, 1, 0, 8, 8, 9, 6, 3, 5, 1, 4, 1, 4, 3, 6, 1, 5, 8, 3, 8, 2, 3, 0, 3, 0, 2, 0, 1, 0, 6, 8, 3, 5, 6, 7, 4, 9, 8, 8, 8, 1, 7, 1, 4, 7, 4, 0, 4, 6, 4, 1, 6, 1, 2, 7, 9, 2, 6, 9, 2, 1, 8, 7, 6, 8, 0, 7, 2, 8, 8, 8, 3, 4, 5, 4, 0
OFFSET
1,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(B)=3.288554185145030064182848108896351414361583823030...
MATHEMATICA
a = 3; b = 4; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195304 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195305 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195306 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195411 *)
CROSSREFS
Cf. A195304.
Sequence in context: A057163 A130918 A230432 * A327575 A328645 A021308
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 18 2011
STATUS
approved