login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195305
Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(3,4,5).
4
3, 2, 8, 8, 5, 5, 4, 1, 8, 5, 1, 4, 5, 0, 3, 0, 0, 6, 4, 1, 8, 2, 8, 4, 8, 1, 0, 8, 8, 9, 6, 3, 5, 1, 4, 1, 4, 3, 6, 1, 5, 8, 3, 8, 2, 3, 0, 3, 0, 2, 0, 1, 0, 6, 8, 3, 5, 6, 7, 4, 9, 8, 8, 8, 1, 7, 1, 4, 7, 4, 0, 4, 6, 4, 1, 6, 1, 2, 7, 9, 2, 6, 9, 2, 1, 8, 7, 6, 8, 0, 7, 2, 8, 8, 8, 3, 4, 5, 4, 0
OFFSET
1,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(B)=3.288554185145030064182848108896351414361583823030...
MATHEMATICA
a = 3; b = 4; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195304 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195305 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195306 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195411 *)
CROSSREFS
Cf. A195304.
Sequence in context: A057163 A130918 A230432 * A327575 A328645 A021308
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 18 2011
STATUS
approved