login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328645
Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of 1/(1-3x+x^2)).
1
1, 3, -2, 8, -9, 3, 21, -32, 18, -4, 55, -105, 80, -30, 5, 144, -330, 315, -160, 45, -6, 377, -1008, 1155, -735, 280, -63, 7, 987, -3016, 4032, -3080, 1470, -448, 84, -8, 2584, -8883, 13572, -12096, 6930, -2646, 672, -108, 9, 6765, -25840, 44415, -45240
OFFSET
0,2
COMMENTS
It appears that (number of nonconstant polynomial divisors of the n-th degree polynomial) = A032741(n+1) = number of divisors d of n+1 that are < n+1, for n >= 0.
EXAMPLE
First eight rows:
1;
3, -2;
8, -9, 3;
21, -32, 18, -4;
55, -105, 80, -30, 5;
144, -330, 315, -160, 45, -6;
377, -1008, 1155, -735, 280, -63, 7;
987, -3016, 4032, -3080, 1470, -448, 84, -8;
First eight polynomials:
1
3 - 2 x
8 - 9 x + 3 x^2
21 - 32 x + 18 x^2 - 4 x^3
= (3 - 2 x) (7 - 6 x + 2 x^2)
55 - 105 x + 80 x^2 - 30 x^3 + 5 x^4
144 - 330 x + 315 x^2 - 160 x^3 + 45 x^4 - 6 x^5
= (3 - 2 x) (6 - 3 x + x^2) (8 - 9 x + 3 x^2)
377 - 1008 x + 1155 x^2 - 735 x^3 + 280 x^4 - 63 x^5 + 7 x^6
987 - 3016 x + 4032 x^2 - 3080 x^3 + 1470 x^4 - 448 x^5 + 84 x^6 - 8 x^7
= (3 - 2 x) (7 - 6 x + 2 x^2) (47 - 72 x + 42 x^2 - 12 x^3 + 2 x^4)
MATHEMATICA
g[x_, n_] := Numerator[ Factor[D[1/(x^2 - 3 x + 1), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *)
h[n_] := CoefficientList[g[x, n]/n!, x]
Table[h[n], {n, 0, 10}] (* A328645 array *)
CROSSREFS
Cf. A326933.
Sequence in context: A230432 A195305 A327575 * A021308 A274181 A195055
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Nov 01 2019
STATUS
approved