login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of 1/(1-3x+x^2)).
1

%I #6 Nov 06 2019 19:15:59

%S 1,3,-2,8,-9,3,21,-32,18,-4,55,-105,80,-30,5,144,-330,315,-160,45,-6,

%T 377,-1008,1155,-735,280,-63,7,987,-3016,4032,-3080,1470,-448,84,-8,

%U 2584,-8883,13572,-12096,6930,-2646,672,-108,9,6765,-25840,44415,-45240

%N Triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of 1/(1-3x+x^2)).

%C It appears that (number of nonconstant polynomial divisors of the n-th degree polynomial) = A032741(n+1) = number of divisors d of n+1 that are < n+1, for n >= 0.

%e First eight rows:

%e 1;

%e 3, -2;

%e 8, -9, 3;

%e 21, -32, 18, -4;

%e 55, -105, 80, -30, 5;

%e 144, -330, 315, -160, 45, -6;

%e 377, -1008, 1155, -735, 280, -63, 7;

%e 987, -3016, 4032, -3080, 1470, -448, 84, -8;

%e First eight polynomials:

%e 1

%e 3 - 2 x

%e 8 - 9 x + 3 x^2

%e 21 - 32 x + 18 x^2 - 4 x^3

%e = (3 - 2 x) (7 - 6 x + 2 x^2)

%e 55 - 105 x + 80 x^2 - 30 x^3 + 5 x^4

%e 144 - 330 x + 315 x^2 - 160 x^3 + 45 x^4 - 6 x^5

%e = (3 - 2 x) (6 - 3 x + x^2) (8 - 9 x + 3 x^2)

%e 377 - 1008 x + 1155 x^2 - 735 x^3 + 280 x^4 - 63 x^5 + 7 x^6

%e 987 - 3016 x + 4032 x^2 - 3080 x^3 + 1470 x^4 - 448 x^5 + 84 x^6 - 8 x^7

%e = (3 - 2 x) (7 - 6 x + 2 x^2) (47 - 72 x + 42 x^2 - 12 x^3 + 2 x^4)

%t g[x_, n_] := Numerator[ Factor[D[1/(x^2 - 3 x + 1), {x, n}]]]

%t Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *)

%t h[n_] := CoefficientList[g[x, n]/n!, x]

%t Table[h[n], {n, 0, 10}] (* A328645 array *)

%Y Cf. A326933.

%K tabl,sign

%O 0,2

%A _Clark Kimberling_, Nov 01 2019