login
A327575
Decimal expansion of the constant that appears in the asymptotic formula for average order of an infinitary analog of Euler's phi function (A091732).
2
3, 2, 8, 9, 3, 5, 8, 3, 8, 8, 4, 0, 3, 3, 5, 5, 1, 6, 3, 5, 5, 7, 4, 8, 4, 8, 7, 3, 6, 5, 2, 2, 0, 2, 2, 9, 5, 7, 7, 0, 6, 6, 5, 2, 3, 7, 9, 4, 6, 9, 4, 0, 4, 4, 8, 0, 8, 4, 0, 3, 7, 9, 8, 7, 5, 2, 8, 1, 2, 4, 0, 0, 7, 7, 3, 7, 9, 6, 8, 7, 4, 8, 8, 3, 9, 9, 7
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.
LINKS
Graeme L. Cohen and Peter Hagis, Jr., Arithmetic functions associated with infinitary divisors of an integer, International Journal of Mathematics and Mathematical Sciences, Vol. 16, No. 2 (1993), pp. 373-383.
FORMULA
Equals Limit_{k->oo} A327572(k)/k^2.
Equals (1/2) * Product_{P} (1 - 1/(P*(P+1))), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).
EXAMPLE
0.328935838840335516355748487365220229577066523794694...
MATHEMATICA
$MaxExtraPrecision = 1500; m = 1500; em = 10; f[x_] := Sum[Log[1 - x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
CROSSREFS
Cf. A104141 (corresponding constant for phi), A065463 (unitary), A306071 (bi-unitary).
Sequence in context: A130918 A230432 A195305 * A328645 A021308 A274181
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 17 2019
STATUS
approved