login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195303
Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,1,sqrt(2) right triangle ABC.
3
6, 1, 4, 0, 5, 8, 9, 7, 1, 0, 3, 2, 2, 1, 2, 6, 1, 1, 5, 4, 6, 3, 8, 4, 8, 9, 2, 5, 3, 9, 3, 8, 5, 4, 0, 8, 2, 6, 0, 3, 6, 7, 3, 8, 6, 8, 9, 6, 9, 9, 6, 8, 9, 2, 7, 6, 4, 7, 9, 4, 1, 9, 1, 7, 6, 7, 3, 2, 8, 5, 7, 4, 5, 1, 7, 0, 3, 8, 0, 3, 8, 4, 9, 2, 8, 5, 5, 8, 3, 1, 6, 0, 3, 1, 2, 0, 5, 5, 1, 2
OFFSET
0,1
COMMENTS
See A195284 for definitions and a general discussion. This constant is the maximum of Philo(ABC,I) over all triangles ABC.
LINKS
FORMULA
Equals (3*sqrt(2)-4)*(1+2*sqrt(2-sqrt(2))).
EXAMPLE
Philo(ABC,I)=0.614058971032212611546384892539385408260...
MATHEMATICA
a = 1; b = 1; c = Sqrt[2];
h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (A) A195301 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B)=(A) *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A163960 *)
(f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, I), A195303 *)
PROG
(PARI) (3*sqrt(2)-4)*(1+2*sqrt(2-sqrt(2))) \\ Michel Marcus, Jul 27 2018
CROSSREFS
Cf. A195284.
Sequence in context: A294347 A229606 A101023 * A354857 A371348 A358981
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 14 2011
STATUS
approved