login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195284
Decimal expansion of shortest length of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5); i.e., decimal expansion of 2*sqrt(10)/3.
94
2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
OFFSET
1,1
COMMENTS
Apart from the first digit, the same as A176219 (decimal expansion of 2+2*sqrt(10)/3).
The Philo line of a point P inside an angle T is the shortest segment that crosses T and passes through P. Philo lines are not generally Euclidean-constructible.
...
Suppose that P lies inside a triangle ABC. Let (A) denote the shortest length of segment from AB through P to AC, and likewise for (B) and (C). The Philo number for ABC and P is here introduced as the normalized sum ((A)+(B)+(C))/(a+b+c), denoted by Philo(ABC,P).
...
Listed below are examples for which P=incenter (the center, I, of the circle inscribed in ABC, the intersection of the angle bisectors of ABC); in this list, r'x means sqrt(x), and t=(1+sqrt(5))/2 (the golden ratio).
a....b....c.......(A).......(B).......(C)....Philo(ABC,I)
3....4....5.....A195284...A002163...A010466...A195285
5....12...13....A195286...A195288...A010487...A195289
7....24...25....A195290...A010524...15/2......A195292
8....15...17....A195293...A195296...A010524...A195297
28...45...53....A195298...A195299...A010466...A195300
1....1....r'2...A195301...A195301...A163960...A195303
1....2....r'5...A195340...A195341...A195342...A195343
1....3....r'10..A195344...A195345...A195346...A195347
2....3....r'13..A195355...A195356...A195357...A195358
2....5....r'29..A195359...A195360...A195361...A195362
r'2..r'3..r'5...A195365...A195366...A195367...A195368
1....r'2..r'3...A195369...A195370...A195371...A195372
1....r'3..2.....A195348...A093821...A120683...A195380
2....r'5..3.....A195381...A195383...A195384...A195385
r'2..r'5..r'7...A195386...A195387...A195388...A195389
r'3..r'5..r'8...A195395...A195396...A195397...A195398
r'7..3....4.....A195399...A195400...A195401...A195402
1....r't..t.....A195403...A195404...A195405...A195406
t-1..t....r'3...A195407...A195408...A195409...A195410
...
In the special case that P is the incenter, I, each Philo line, being perpendicular to an angle bisector, is constructible, and (A),(B),(C) can be evaluated exactly.
For the 3,4,5 right triangle, (A)=(2/3)*sqrt(10), (B)=sqrt(5), (C)=sqrt(8), so that Philo(ABC,I)=((2/3)sqrt(10)+sqrt(5)+sqrt(8))/12, approximately 0.59772335.
...
More generally, for arbitrary right triangle (a,b,c) with a<=b<c, let f=2*a*b/(a+b+c). Then, for P=I,
(A)=f*sqrt(a^2+(b+c)^2)/(b+c),
(B)=f*sqrt(b^2+(c+a)^2)/(c+a),
(C)=f*sqrt(2).
It appears that I is the only triangle center P for which simple formulas for (A), (B), (C) are available. For P=centroid, see A195304.
REFERENCES
David Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see chapter 16.
Clark Kimberling, Geometry In Action, Key College Publishing, 2003, pages 115-116.
LINKS
Michael Cavers, Spiked Math #524 (2012)
Clark Kimberling, Geometry In Action, 2003, scanned copy (with permission). See pages 115-116.
FORMULA
Equals (2/3)*sqrt(10).
EXAMPLE
2.10818510677891955466592902962...
MAPLE
philo := proc(a, b, c) local f, A, B, C, P:
f:=2*a*b/(a+b+c):
A:=f*sqrt((a^2+(b+c)^2))/(b+c):
B:=f*sqrt((b^2+(c+a)^2))/(c+a):
C:=f*sqrt(2):
P:=(A+B+C)/(a+b+c):
print(simplify([A, B, C, P])):
print(evalf([A, B, C, P])): end:
philo(3, 4, 5); # Georg Fischer, Jul 18 2021
MATHEMATICA
a = 3; b = 4; c = 5;
h = a (a + c)/(a + b + c); k = a*b/(a + b + c); (* incenter *)
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) 195284 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (B) A002163 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A010466 *)
(f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, I) A195285 *)
PROG
(PARI) (2/3)*sqrt(10) \\ Michel Marcus, Dec 24 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 14 2011
EXTENSIONS
Table and formulas corrected by Georg Fischer, Jul 17 2021
STATUS
approved