login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075615
Let P(k,X) = Product_{i=1..2*k} (X-1/cos(Pi*(2*i-1)/(4*k)) ) which is a polynomial with integer coefficients. Sequence gives array of coefficients for P(k,X).
0
1, 0, -2, 1, 0, -8, 0, 8, 1, 0, -18, 0, 48, 0, -32, 1, 0, -32, 0, 160, 0, -256, 0, 128, 1, 0, -50, 0, 400, 0, -1120, 0, 1280, 0, -512, 1, 0, -72, 0, 840, 0, -3584, 0, 6912, 0, -6144, 0, 2048, 1, 0, -98, 0, 1568, 0, -9408, 0, 26880, 0, -39424, 0, 28672, 0, -8192, 1, 0, -128, 0, 2688, 0, -21504, 0, 84480, 0, -180224, 0
OFFSET
1,3
COMMENTS
Included in A053120.
EXAMPLE
Array begins:
1, 0, -2;
1, 0, -8, 0, 8;
1, 0, -18, 0, 48, 0, -32;
1, 0, -32, 0, 160, 0, -256, 0, 128;
1, 0, -50, 0, 400, 0, -1120, 0, 1280, 0, -512;
...
MATHEMATICA
rows = 8; P[k_] := Product[x-1/Cos[Pi*((2*i-1)/(4*k))], {i, 1, 2*k}]; Table[CoefficientList[P[k], x] // Round // Reverse, {k, 1, rows}] // Flatten (* Jean-François Alcover, Nov 22 2016 *)
CROSSREFS
Sequence in context: A188835 A217735 A369585 * A195284 A351263 A076341
KEYWORD
easy,sign,tabf
AUTHOR
Benoit Cloitre, Oct 11 2002
STATUS
approved