The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195292 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 7,24,25 right triangle ABC. 3
 3, 9, 3, 6, 8, 2, 0, 8, 2, 8, 8, 4, 8, 5, 4, 1, 9, 2, 6, 3, 7, 0, 4, 4, 8, 6, 7, 7, 1, 1, 9, 8, 5, 3, 6, 1, 3, 6, 9, 9, 3, 9, 7, 3, 2, 2, 1, 2, 0, 9, 2, 5, 0, 3, 2, 3, 6, 5, 3, 3, 0, 1, 3, 1, 0, 0, 3, 3, 8, 6, 1, 8, 4, 9, 3, 0, 4, 0, 0, 6, 8, 3, 6, 0, 2, 7, 5, 2, 6, 1, 4, 0, 7, 1, 1, 7, 8, 3, 9, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A195284 for definitions and a general discussion. LINKS Table of n, a(n) for n=0..99. EXAMPLE Philo(ABC,I)=0.39368208288485419263704486771198536... MATHEMATICA a = 7; b = 24; c = 25; h = a (a + c)/(a + b + c); k = a*b/(a + b + c); f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195290 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (B)=7.5 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (C) A010524 *) (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC, I) A195292 *) CROSSREFS Cf. A195284. Sequence in context: A074959 A010632 A340036 * A197572 A224233 A021258 Adjacent sequences: A195289 A195290 A195291 * A195293 A195294 A195295 KEYWORD nonn,cons AUTHOR Clark Kimberling, Sep 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 17:42 EDT 2024. Contains 374953 sequences. (Running on oeis4.)