login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195293 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(8,15,17). 4
6, 1, 8, 4, 6, 5, 8, 4, 3, 8, 4, 2, 6, 4, 9, 0, 8, 2, 4, 7, 3, 2, 1, 1, 4, 7, 8, 3, 9, 6, 1, 1, 1, 5, 5, 3, 7, 7, 2, 0, 7, 9, 8, 8, 3, 8, 0, 6, 0, 4, 3, 0, 6, 5, 1, 5, 9, 7, 9, 5, 0, 3, 5, 9, 6, 4, 2, 4, 3, 1, 5, 1, 9, 5, 0, 6, 4, 3, 2, 3, 9, 0, 3, 8, 1, 7, 9, 5, 4, 7, 6, 2, 1, 6, 0, 2, 6, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A195284 for definitions and a general discussion.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

(A)=6.18465843842649082473211478396111...

MATHEMATICA

a = 8; b = 15; c = 17;

h = a (a + c)/(a + b + c); k = a*b/(a + b + c);

f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;

s = NSolve[D[f[t], t] == 0, t, 150]

f1 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (A) A195293 *)

f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f3 = (f[t])^(1/2) /. Part[s, 1]

RealDigits[%, 10, 100] (* (B) A195296 *)

f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f2 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (C) A010524 *)

(f1 + f2 + f3)/(a + b + c)

RealDigits[%, 10, 100] (* Philo(ABC, I), A195297 *)

CROSSREFS

Cf. A195284, A010524, A195296, A195297.

Sequence in context: A244692 A248589 A288493 * A230763 A145314 A011490

Adjacent sequences:  A195290 A195291 A195292 * A195294 A195295 A195296

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Sep 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 03:22 EDT 2020. Contains 336421 sequences. (Running on oeis4.)