OFFSET
0,5
COMMENTS
Row sums are C(2;n), A064062. Inverse is A110509. Diagonal sums are A108308. [Corrected by Philippe Deléham, Nov 09 2007]
Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, 2, 2, 2, 2, 2, 2, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2014
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
Number triangle: T(0,k) = 0^k, T(n,k) = (k/n)*C(2n-k-1, n-k)*2^(n-k), n, k > 0.
T(n,k) = A106566(n,k)*2^(n-k). - Philippe Deléham, Nov 08 2007
T(n,k) = 2*T(n,k+1) + T(n-1,k-1) with T(n,n) = 1 and T(n,0) = 0 for n >= 1. - Peter Bala, Feb 02 2020
EXAMPLE
Rows begin
1;
0, 1;
0, 2, 1;
0, 8, 4, 1;
0, 40, 20, 6, 1;
0, 224, 112, 36, 8, 1;
...
Production matrix begins:
0, 1;
0, 2, 1;
0, 4, 2, 1;
0, 8, 4, 2, 1;
0, 16, 8, 4, 2, 1;
0, 32, 16, 8, 4, 2, 1;
0, 64, 32, 16, 8, 4, 2, 1;
... - Philippe Deléham, Sep 23 2014
MATHEMATICA
T[n_, k_] := (k/n)*Binomial[2*n - k - 1, n - k]*2^(n - k); Join[{1}, Table[T[n, k], {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Aug 29 2017 *)
PROG
(PARI) concat([1], for(n=1, 25, for(k=0, n, print1((k/n)*binomial(2*n-k-1, n-k)*2^(n-k), ", ")))) \\ G. C. Greubel, Aug 29 2017
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jul 24 2005
STATUS
approved