login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110510
Riordan array (1, x*c(2x)), c(x) the g.f. of A000108.
6
1, 0, 1, 0, 2, 1, 0, 8, 4, 1, 0, 40, 20, 6, 1, 0, 224, 112, 36, 8, 1, 0, 1344, 672, 224, 56, 10, 1, 0, 8448, 4224, 1440, 384, 80, 12, 1, 0, 54912, 27456, 9504, 2640, 600, 108, 14, 1, 0, 366080, 183040, 64064, 18304, 4400, 880, 140, 16, 1, 0, 2489344, 1244672, 439296
OFFSET
0,5
COMMENTS
Row sums are C(2;n), A064062. Inverse is A110509. Diagonal sums are A108308. [Corrected by Philippe Deléham, Nov 09 2007]
Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, 2, 2, 2, 2, 2, 2, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2014
FORMULA
Number triangle: T(0,k) = 0^k, T(n,k) = (k/n)*C(2n-k-1, n-k)*2^(n-k), n, k > 0.
T(n,k) = A106566(n,k)*2^(n-k). - Philippe Deléham, Nov 08 2007
T(n,k) = 2*T(n,k+1) + T(n-1,k-1) with T(n,n) = 1 and T(n,0) = 0 for n >= 1. - Peter Bala, Feb 02 2020
EXAMPLE
Rows begin
1;
0, 1;
0, 2, 1;
0, 8, 4, 1;
0, 40, 20, 6, 1;
0, 224, 112, 36, 8, 1;
...
Production matrix begins:
0, 1;
0, 2, 1;
0, 4, 2, 1;
0, 8, 4, 2, 1;
0, 16, 8, 4, 2, 1;
0, 32, 16, 8, 4, 2, 1;
0, 64, 32, 16, 8, 4, 2, 1;
... - Philippe Deléham, Sep 23 2014
MATHEMATICA
T[n_, k_] := (k/n)*Binomial[2*n - k - 1, n - k]*2^(n - k); Join[{1}, Table[T[n, k], {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Aug 29 2017 *)
PROG
(PARI) concat([1], for(n=1, 25, for(k=0, n, print1((k/n)*binomial(2*n-k-1, n-k)*2^(n-k), ", ")))) \\ G. C. Greubel, Aug 29 2017
CROSSREFS
Sequence in context: A195284 A351263 A076341 * A337506 A327363 A051122
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 24 2005
STATUS
approved