

A195359


Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(2,5,sqrt(29)).


5



1, 6, 4, 4, 5, 0, 8, 0, 6, 0, 3, 2, 3, 0, 2, 4, 2, 4, 9, 0, 0, 0, 2, 9, 9, 7, 3, 1, 4, 3, 0, 5, 1, 3, 3, 1, 4, 8, 7, 5, 9, 6, 6, 3, 2, 9, 1, 3, 1, 4, 2, 8, 2, 3, 4, 6, 5, 7, 9, 9, 0, 2, 4, 0, 2, 4, 4, 3, 1, 7, 7, 8, 7, 2, 2, 0, 2, 2, 3, 8, 3, 8, 8, 5, 5, 0, 3, 6, 2, 6, 4, 9, 3, 8, 6, 0, 2, 8, 5, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A195284 for definitions and a general discussion.


LINKS

Table of n, a(n) for n=1..100.


EXAMPLE

(A)=1.64450806032302424900029973143051331487596632913...


MATHEMATICA

a = 2; b = 5; c = Sqrt[29]; f = 2 a*b/(a + b + c);
x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
x3 = f*Sqrt[2]
N[x1, 100]
RealDigits[%] (* (A) A195359 *)
N[x2, 100]
RealDigits[%] (* (B) A195360 *)
N[x3, 100]
RealDigits[%] (* (C) A195361 *)
N[(x1 + x2 + x3)/(a + b + c), 100]
RealDigits[%] (* Philo(ABC, I) A195362 *)


CROSSREFS

Cf. A195284, A195360, A195361, A195362.
Sequence in context: A029680 A201285 A317127 * A316162 A198840 A211268
Adjacent sequences: A195356 A195357 A195358 * A195360 A195361 A195362


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Sep 16 2011


STATUS

approved



