|
|
A195407
|
|
Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
|
|
5
|
|
|
5, 1, 2, 5, 2, 2, 2, 7, 2, 3, 6, 2, 2, 2, 5, 3, 7, 9, 2, 6, 3, 5, 4, 9, 4, 5, 5, 8, 1, 0, 7, 3, 5, 5, 1, 6, 9, 4, 7, 8, 2, 1, 9, 0, 8, 2, 6, 1, 4, 2, 4, 2, 5, 7, 4, 2, 0, 1, 3, 0, 4, 2, 4, 3, 2, 2, 0, 8, 9, 6, 5, 5, 7, 2, 5, 0, 5, 7, 7, 4, 0, 5, 1, 8, 9, 2, 2, 1, 3, 7, 8, 5, 6, 1, 3, 0, 7, 0, 5, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
See A195284 for definitions and a general discussion.
|
|
LINKS
|
|
|
EXAMPLE
|
(A)=0.51252227236222537926354945581073551694...
|
|
MATHEMATICA
|
a = b - 1; b = (1 + Sqrt[5])/2; c = Sqrt[3];
f = 2 a*b/(a + b + c);
x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
x3 = f*Sqrt[2]
N[x1, 100]
N[x2, 100]
N[x3, 100]
N[(x1 + x2 + x3)/(a + b + c), 100]
RealDigits[%] (* Philo(ABC, I) A195410 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|