login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144738
Decimal expansion of constant related to a dynamical system involving the zeta function.
0
5, 1, 2, 7, 3, 7, 9, 1, 5, 4, 5, 4, 9, 6, 9, 3, 3, 5, 3, 2, 9, 2, 2, 7, 0, 9, 9, 7, 0, 6, 0, 7, 5, 2, 9, 5, 1, 2, 4, 0, 4, 8, 2, 8, 4, 8, 4, 5, 6, 3, 7, 1, 9, 3, 6, 6, 1, 0, 0, 5, 0, 1, 3, 6, 2, 8, 3, 5, 5, 0, 4, 7, 7, 6, 5, 5, 9, 4, 4, 5, 7, 4, 1, 2, 2, 5, 9, 9, 1, 5, 9, 9, 8, 8, 8, 3, 0, 9, 6, 9, 0, 1, 6, 0
OFFSET
0,1
COMMENTS
If iterations of zeta function converge to the constant A069857 then the ratio of successive imaginary parts of the orbit converge to -c. I.e., let z(n+1) = zeta(z(n)) if lim_{n->oo} z(n) = A069857; then lim_{n->oo} imag(z(n+1))/imag(z(n)) = -0.512....
-c = zeta'(A069857). - Gerald McGarvey, Feb 22 2009
LINKS
B. Brent, Experiments with zeta dynamics, Feb 2012. [Broken link]
B. Brent, Experiments with the dynamics of the Riemann zeta function, arXiv:1703.08779 [math.NT], 2017.
EXAMPLE
c=0.51273791545496933532922709970607529512404828484563...
MATHEMATICA
digits = 104; A069857 = x /. FindRoot[ Zeta[x] == x, {x, 0}, WorkingPrecision -> digits+5]; Zeta'[A069857] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013, after Gerald McGarvey *)
PROG
(PARI) -zeta'(solve(x=-1, 0, zeta(x)-x)) \\ Michel Marcus, May 05 2020
CROSSREFS
Cf. A069857.
Sequence in context: A195407 A011509 A361970 * A371849 A021199 A073324
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Sep 20 2008
STATUS
approved