login
A083927
Inverse function of N -> N injection A057123.
17
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0
OFFSET
0,13
COMMENTS
a(0)=0 because A057123(0)=0, but a(n) = 0 also for those n which do not occur as values of A057123. All positive natural numbers occur here once.
If g(n) = A083927(f(A057123(n))) then we can say that Catalan bijection g embeds into Catalan bijection f in scale n:2n, using the obvious binary tree -> general tree embedding. E.g. we have: A057163 = A083927(A057164(A057123(n))), A057117 = A083927(A072088(A057123(n))), A057118 = A083927(A072089(A057123(n))), A069770 = A083927(A072796(A057123(n))), A072797 = A083927(A072797(A057123(n))).
PROG
(Scheme-function showing the essential idea. For the full source, follow the "Catalan bijections" link.)
(define (Tree2BinTree_if_possible gt) (call-with-current-continuation (lambda (e) (let recurse ((gt gt)) (cond ((not (pair? gt)) gt) ((eq? 2 (length gt)) (cons (recurse (car gt)) (recurse (cadr gt)))) (else (e '())))))))
CROSSREFS
a(A057123(n)) = n for all n. Cf. A083925-A083926, A083928-A083929, A083935.
Sequence in context: A173956 A306078 A284273 * A154724 A232747 A130460
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2003
STATUS
approved