OFFSET
0,13
COMMENTS
a(0)=0 because A057123(0)=0, but a(n) = 0 also for those n which do not occur as values of A057123. All positive natural numbers occur here once.
If g(n) = A083927(f(A057123(n))) then we can say that Catalan bijection g embeds into Catalan bijection f in scale n:2n, using the obvious binary tree -> general tree embedding. E.g. we have: A057163 = A083927(A057164(A057123(n))), A057117 = A083927(A072088(A057123(n))), A057118 = A083927(A072089(A057123(n))), A069770 = A083927(A072796(A057123(n))), A072797 = A083927(A072797(A057123(n))).
LINKS
Antti Karttunen, Gatomorphisms
PROG
(Scheme-function showing the essential idea. For the full source, follow the "Catalan bijections" link.)
(define (Tree2BinTree_if_possible gt) (call-with-current-continuation (lambda (e) (let recurse ((gt gt)) (cond ((not (pair? gt)) gt) ((eq? 2 (length gt)) (cons (recurse (car gt)) (recurse (cadr gt)))) (else (e '())))))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2003
STATUS
approved