login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175130
Indices of Fibonacci numbers that are not cubefree.
1
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 125, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 250, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324
OFFSET
1,1
COMMENTS
Supersequence of A037917.
Conjecture: all terms are multiples of 6 or 125. - Harvey P. Dale, Apr 28 2020
The conjecture is false. The counterexamples are 392, 784, 1183, 1210, .... . - Amiram Eldar, Oct 16 2023
LINKS
FORMULA
A000045 INTERSECT A046099.
A010056(a(n)) * (1 - A212793(a(n))) = 1. - Reinhard Zumkeller, May 27 2012
EXAMPLE
Fibonacci(125) = 5^3 * 3001 * 158414167964045700001 = A000045(125) is not cubefree, which adds 125 to the sequence.
MATHEMATICA
Select[Range[350], Max[FactorInteger[Fibonacci[#]][[All, 2]]]>2&] (* Harvey P. Dale, Apr 28 2020 *)
PROG
(Haskell)
import Data.List (findIndices)
a175130 n = a175130_list !! (n-1)
a175130_list = map (+ 1) $ findIndices ((== 0) . a212793) $ tail a000045_list
-- Reinhard Zumkeller, May 27 2012
(PARI) is(n)=n>5 && vecmax(factor(fibonacci(n))[, 2])>2 \\ Charles R Greathouse IV, Nov 07 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Feb 16 2010
STATUS
approved