login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134492
a(n) = Fibonacci(6*n).
14
0, 8, 144, 2584, 46368, 832040, 14930352, 267914296, 4807526976, 86267571272, 1548008755920, 27777890035288, 498454011879264, 8944394323791464, 160500643816367088, 2880067194370816120, 51680708854858323072, 927372692193078999176, 16641027750620563662096
OFFSET
0,2
COMMENTS
All terms are divisible by 8. - Alonso del Arte, Jul 27 2013
Conjecture: For n >= 2, the terms of this sequence are exactly those Fibonacci numbers which are the sum of the three numbers of a Pythagorean triple (checked up to F(80)). - Felix Huber, Nov 03 2023
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
FORMULA
a(n) = 18*a(n-1) - a(n-2) = 8*A049660(n). G.f.: 8*x/(1-18*x+x^2). - R. J. Mathar, Feb 16 2010
a(n) = A000045(A008588(n)). - Michel Marcus, Nov 08 2013
a(n) = ((-1+(9+4*sqrt(5))^(2*n)))/(sqrt(5)*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = L(2n-1) * F(2n+1)^2 + L(2n+1) * F(2n-1)^2, where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
a(n) = Fibonacci(3*n) * Lucas(3*n) = A000045(3*n) * A000032(3*n) = A014445(n) * A014448(n). - Amiram Eldar, Jan 11 2022
MATHEMATICA
Table[Fibonacci[6n], {n, 0, 30}]
LinearRecurrence[{18, -1}, {0, 8}, 30] (* Harvey P. Dale, Aug 15 2017 *)
PROG
(MuPAD) numlib::fibonacci(6*n) $ n = 0..25; // Zerinvary Lajos, May 09 2008
(Sage) [fibonacci(6*n) for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
(Magma) [Fibonacci(6*n): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
(PARI) a(n)=fibonacci(6*n) \\ Charles R Greathouse IV, Sep 16 2015
(PARI) concat(0, Vec(8*x/(1-18*x+x^2) + O(x^20))) \\ Colin Barker, Jan 24 2016
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 28 2007
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 16 2010
STATUS
approved