login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134497
a(n) = Fibonacci(6n+5).
12
5, 89, 1597, 28657, 514229, 9227465, 165580141, 2971215073, 53316291173, 956722026041, 17167680177565, 308061521170129, 5527939700884757, 99194853094755497, 1779979416004714189, 31940434634990099905, 573147844013817084101, 10284720757613717413913
OFFSET
0,1
FORMULA
G.f.: ( 5-x ) / ( 1-18*x+x^2 ). a(n) = 5*A049660(n+1)-A049660(n). - R. J. Mathar, Apr 17 2011
a(n) = A000045(A016969(n)). - Michel Marcus, Nov 08 2013
a(n) = ((25-11*sqrt(5)+(9+4*sqrt(5))^(2*n)*(25+11*sqrt(5))))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
a(n) = 5*S(n, 18) - S(n-1, 18), n >= 0, with the Chebyshev S-polynomials S(n-1, 18) = A049660(n). (See the g.f.) - Wolfdieter Lang, Jul 10 2018
From Peter Bala, Aug 11 2022: (Start)
Let n ** m = n*m + floor(phi*n)*floor(phi*m), where phi = (1 + sqrt(5))/2, denote the Porta-Stolarsky star product of the integers n and m (see A101858). Then a(n) = 5 ** 5 ** ... ** 5 (n+1 factors).
a(2*n+1) = a(n) ** a(n) = Fibonacci(12*n+11); a(3*n+2) = a(n) ** a(n) ** a(n) = Fibonacci(18*n+17) and so on. (End)
MATHEMATICA
Table[Fibonacci[6n+5], {n, 0, 30}]
Take[Fibonacci[Range[100]], {5, -1, 6}] (* Harvey P. Dale, Jun 18 2013 *)
PROG
(Magma) [Fibonacci(6*n +5): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
(PARI) a(n)=fibonacci(6*n+5) \\ Charles R Greathouse IV, Jun 11 2015
(PARI) Vec((5-x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 28 2007
EXTENSIONS
Offset changed from 1 to 0 by Vincenzo Librandi, Apr 17 2011
STATUS
approved