|
|
A134494
|
|
a(n) = Fibonacci(6n+2).
|
|
7
|
|
|
1, 21, 377, 6765, 121393, 2178309, 39088169, 701408733, 12586269025, 225851433717, 4052739537881, 72723460248141, 1304969544928657, 23416728348467685, 420196140727489673, 7540113804746346429, 135301852344706746049, 2427893228399975082453
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..750
Index entries for linear recurrences with constant coefficients, signature (18,-1).
|
|
FORMULA
|
From R. J. Mathar, Jul 04 2011: (Start)
G.f.: ( 1+3*x ) / ( 1-18*x+x^2 ).
a(n) = 3*A049660(n)+A049660(n+1). (End)
a(n) = A000045(A016933(n)). - Michel Marcus, Nov 07 2013
a(n) = ((5-3*sqrt(5)+(5+3*sqrt(5))*(9+4*sqrt(5))^(2*n)))/(10*(9+4*sqrt(5))^n). - Colin Barker, Jan 24 2016
|
|
MAPLE
|
seq( combinat[fibonacci](6*n+2), n=0..10) ; # R. J. Mathar, Apr 17 2011
|
|
MATHEMATICA
|
Table[Fibonacci[6n+2], {n, 0, 30}]
|
|
PROG
|
(Magma) [Fibonacci(6*n +2): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
(PARI) a(n)=fibonacci(6*n+2) \\ Charles R Greathouse IV, Jun 11 2015
(PARI) Vec((1+3*x)/(1-18*x+x^2) + O(x^100)) \\ Altug Alkan, Jan 24 2016
|
|
CROSSREFS
|
Cf. A000045, A001906, A001519, A015448, A014445, A033887-A033891, A102312, A099100, A103134, A134490 - A134504.
Sequence in context: A036904 A218763 A181364 * A004370 A001881 A240683
Adjacent sequences: A134491 A134492 A134493 * A134495 A134496 A134497
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Artur Jasinski, Oct 28 2007
|
|
EXTENSIONS
|
Index in definition corrected by T. D. Noe, Joerg Arndt, Apr 17 2011
|
|
STATUS
|
approved
|
|
|
|