login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(6*n).
14

%I #61 Sep 25 2024 01:53:04

%S 0,8,144,2584,46368,832040,14930352,267914296,4807526976,86267571272,

%T 1548008755920,27777890035288,498454011879264,8944394323791464,

%U 160500643816367088,2880067194370816120,51680708854858323072,927372692193078999176,16641027750620563662096

%N a(n) = Fibonacci(6*n).

%C All terms are divisible by 8. - _Alonso del Arte_, Jul 27 2013

%C Conjecture: For n >= 2, the terms of this sequence are exactly those Fibonacci numbers which are the sum of the three numbers of a Pythagorean triple (checked up to F(80)). - _Felix Huber_, Nov 03 2023

%H Colin Barker, <a href="/A134492/b134492.txt">Table of n, a(n) for n = 0..500</a>

%H Hacène Belbachir, Soumeya Merwa Tebtoub and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-1).

%F a(n) = 18*a(n-1) - a(n-2) = 8*A049660(n). G.f.: 8*x/(1-18*x+x^2). - _R. J. Mathar_, Feb 16 2010

%F a(n) = A000045(A008588(n)). - _Michel Marcus_, Nov 08 2013

%F a(n) = ((-1+(9+4*sqrt(5))^(2*n)))/(sqrt(5)*(9+4*sqrt(5))^n). - _Colin Barker_, Jan 24 2016

%F a(n) = L(2n-1) * F(2n+1)^2 + L(2n+1) * F(2n-1)^2, where F(n) = A000045(n) and L(n) = A000032(n). - _Diego Rattaggi_, Nov 12 2020

%F a(n) = Fibonacci(3*n) * Lucas(3*n) = A000045(3*n) * A000032(3*n) = A014445(n) * A014448(n). - _Amiram Eldar_, Jan 11 2022

%t Table[Fibonacci[6n], {n, 0, 30}]

%t LinearRecurrence[{18,-1},{0,8},30] (* _Harvey P. Dale_, Aug 15 2017 *)

%o (MuPAD) numlib::fibonacci(6*n) $ n = 0..25; // _Zerinvary Lajos_, May 09 2008

%o (Sage) [fibonacci(6*n) for n in range(0, 17)] # _Zerinvary Lajos_, May 15 2009

%o (Magma) [Fibonacci(6*n): n in [0..100]]; // _Vincenzo Librandi_, Apr 17 2011

%o (PARI) a(n)=fibonacci(6*n) \\ _Charles R Greathouse IV_, Sep 16 2015

%o (PARI) concat(0, Vec(8*x/(1-18*x+x^2) + O(x^20))) \\ _Colin Barker_, Jan 24 2016

%Y Cf. A000032, A000045, A008588, A049660, A079343, A014445, A014448, A134493, A134494, A134495, A103134, A134497, A134498.

%K nonn,easy

%O 0,2

%A _Artur Jasinski_, Oct 28 2007

%E Offset corrected by _R. J. Mathar_, Feb 16 2010