Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #106 Jan 12 2024 06:08:30
%S 1,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90,96,102,108,114,120,126,
%T 132,138,144,150,156,162,168,174,180,186,192,198,204,210,216,222,228,
%U 234,240,246,252,258,264,270,276,282,288,294,300,306,312,318,324,330,336,342,348
%N Coordination sequence for hexagonal lattice.
%C The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice. It is also the planar net 3.3.3.3.3.3.
%C Coordination sequence for 2-dimensional cyclotomic lattice Z[zeta_6].
%C Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 20 ).
%C Also the Engel expansion of exp^(1/6); cf. A006784 for the Engel expansion definition. - _Benoit Cloitre_, Mar 03 2002
%C Numbers k such that k+floor(k/2) | k*floor(k/2). - _Wesley Ivan Hurt_, Dec 01 2020
%H T. D. Noe, <a href="/A008458/b008458.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Beck and S. Hosten, <a href="https://arxiv.org/abs/math/0508136">Cyclotomic polytopes and growth series of cyclotomic lattices</a>, arXiv:math/0508136 [math.CO], 2005-2006.
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Brian Galebach, <a href="/A250120/a250120.html">k-uniform tilings (k <= 6) and their A-numbers</a>
%H Chaim Goodman-Strauss and N. J. A. Sloane, <a href="https://doi.org/10.1107/S2053273318014481">A Coloring Book Approach to Finding Coordination Sequences</a>, Acta Cryst. A75 (2019), 121-134, also <a href="http://NeilSloane.com/doc/Cairo_final.pdf">on NJAS's home page</a>. Also <a href="http://arxiv.org/abs/1803.08530">on arXiv</a>, arXiv:1803.08530 [math.CO], 2018-2019.
%H Rostislav Grigorchuk and Cosmas Kravaris, <a href="https://arxiv.org/abs/2012.13661">On the growth of the wallpaper groups</a>, arXiv:2012.13661 [math.GR], 2020. See section 4.1 p. 19.
%H Branko Grünbaum and Geoffrey C. Shephard, <a href="http://www.jstor.org/stable/2689529">Tilings by regular polygons</a>, Mathematics Magazine, 50 (1977), 227-247.
%H Tom Karzes, <a href="/A250122/a250122.html">Tiling Coordination Sequences</a>
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a>
%H Reticular Chemistry Structure Resource, <a href="http://rcsr.net/layers/hxl">hxl</a>
%H N. J. A. Sloane, <a href="/A008576/a008576.png">The uniform planar nets and their A-numbers</a> [Annotated scanned figure from Gruenbaum and Shephard (1977)]
%H N. J. A. Sloane, <a href="/A296368/a296368_2.png">Overview of coordination sequences of Laves tilings</a> [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0n.gp">Dimensions of the spaces S_k(Gamma_0(N))</a>
%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>
%H <a href="/index/Aa#A2">Index entries for sequences related to A2 = hexagonal = triangular lattice</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%H <a href="/index/Con#coordination_sequences">Index entries for coordination sequences</a>
%F G.f.: (1 + 4*x + x^2)/(1 - x)^2.
%F a(n) = A003215(n) - A003215(n-1), n > 0.
%F Equals binomial transform of [1, 5, 1, -1, 1, -1, 1, ...]. - _Gary W. Adamson_, Jul 08 2008
%F G.f.: Hypergeometric2F1([3,-2], [1], -x/(1-x)). - _Paul Barry_, Sep 18 2008
%F a(n) = 0^n + 6*n. - _Vincenzo Librandi_, Aug 21 2011
%F n*a(1) + (n-1)*a(2) + (n-2)*a(3) + ... + 2*a(n-1) + a(n) = n^3. - _Warren Breslow_, Oct 28 2013
%F E.g.f.: 1 + 6*x*exp(x). - _Stefano Spezia_, Jun 26 2022
%e From _Omar E. Pol_, Aug 20 2011: (Start)
%e Illustration of initial terms:
%e . o o o o o
%e . o o o o o o
%e . o o o o o o o
%e . o o o o o o o o
%e . o o o o o o o o o
%e . o o o o o o o o
%e . 1 o o o o o o o
%e . 6 o o o o o o
%e . 12 o o o o o
%e . 18
%e . 24
%e (End)
%e G.f. = 1 + 6*x + 12*x^2 + 18*x^3 + 24*x^4 + 30*x^5 + 36*x^6 + 42*x^7 + 48*x^8 + 54*x^9 + ...
%p 1, seq(6*n, n=1..65);
%t Join[{1},6*Range[60]] (* _Harvey P. Dale_, Jul 21 2013 *)
%t a[ n_] := Boole[n == 0] + 6 n; (* _Michael Somos_, May 21 2015 *)
%o (PARI) {a(n) = 6*n + (!n)};
%o (Magma) [0^n+6*n: n in [0..60] ]; // _Vincenzo Librandi_, Aug 21 2011
%o (Maxima) makelist(if n=0 then 1 else 6*n,n,0,65); /* _Martin Ettl_, Nov 12 2012 */
%o (SageMath) [6*n+int(n==0) for n in range(66)] # _G. C. Greubel_, May 25 2023
%Y Essentially the same as A008588.
%Y List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574(4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579(3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529(3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
%Y List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
%Y Cf. A032528. - _Omar E. Pol_, Aug 20 2011
%Y Cf. A048477 (binomial Transf.)
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_