login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187389
a(n) = floor(r*n), where r = 1 + sqrt(7) + sqrt(6); complement of A187390.
2
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 323, 329, 335, 341, 347, 353, 359, 365, 371, 377, 384, 390, 396, 402, 408, 414, 420, 426
OFFSET
1,1
COMMENTS
A187389 and A187390 are the Beatty sequences based on r=1+sqrt(7)+sqrt(6) and s=1+sqrt(7)-sqrt(6); 1/r+1/s=1.
FORMULA
a(n)=floor(r*n), where r=1+sqrt(7)+sqrt(6).
MATHEMATICA
k=7; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187389 *)
Table[Floor[s*n], {n, 1, 80}] (* A187390 *)
CROSSREFS
Cf. A187390.
Sequence in context: A008458 A008588 A078596 * A085129 A236240 A242650
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
STATUS
approved