login
A187389
a(n) = floor(r*n), where r = 1 + sqrt(7) + sqrt(6); complement of A187390.
2
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 128, 134, 140, 146, 152, 158, 164, 170, 176, 182, 188, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 323, 329, 335, 341, 347, 353, 359, 365, 371, 377, 384, 390, 396, 402, 408, 414, 420, 426
OFFSET
1,1
COMMENTS
A187389 and A187390 are the Beatty sequences based on r=1+sqrt(7)+sqrt(6) and s=1+sqrt(7)-sqrt(6); 1/r+1/s=1.
FORMULA
a(n)=floor(r*n), where r=1+sqrt(7)+sqrt(6).
MATHEMATICA
k=7; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187389 *)
Table[Floor[s*n], {n, 1, 80}] (* A187390 *)
CROSSREFS
Cf. A187390.
Sequence in context: A008458 A008588 A078596 * A085129 A236240 A242650
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
STATUS
approved