login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187386
a(n) = floor(s*n), where s=1+sqrt(3)-sqrt(2); complement of A187385.
2
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105
OFFSET
1,2
COMMENTS
A187385 and A187386 are the Beatty sequences based on r=1+sqrt(3)+sqrt(2) and s=1+sqrt(3)-sqrt(2); 1/r+1/s=1.
FORMULA
a(n) = floor(s*n), where s=1+sqrt(3)-sqrt(2).
MATHEMATICA
k=3; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187385 *)
Table[Floor[s*n], {n, 1, 80}] (* A187386 *)
PROG
(PARI) vector(120, n, floor(n*(sqrt(3) - sqrt(2) + 1))) \\ G. C. Greubel, Aug 19 2018
(Magma) [Floor(n*(Sqrt(3) - Sqrt(2) +1)): n in [1..120]]; // G. C. Greubel, Aug 19 2018
CROSSREFS
Cf. A187385.
Sequence in context: A329990 A109237 A164087 * A059531 A039053 A352675
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
STATUS
approved