login
A187385
a(n) = floor(r*n), where r=1+sqrt(3)+sqrt(2); complement of A187386.
2
4, 8, 12, 16, 20, 24, 29, 33, 37, 41, 45, 49, 53, 58, 62, 66, 70, 74, 78, 82, 87, 91, 95, 99, 103, 107, 111, 116, 120, 124, 128, 132, 136, 140, 145, 149, 153, 157, 161, 165, 169, 174, 178, 182, 186, 190, 194, 199, 203, 207, 211, 215, 219, 223, 228, 232, 236, 240, 244, 248, 252, 257, 261, 265, 269
OFFSET
1,1
COMMENTS
A187385 and A187386 are the Beatty sequences based on r=1+sqrt(3)+sqrt(2) and s=1+sqrt(3)-sqrt(2); 1/r+1/s=1.
FORMULA
a(n) = floor(r*n), where r=1+sqrt(3)+sqrt(2).
MATHEMATICA
k=3; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187385 *)
Table[Floor[s*n], {n, 1, 80}] (* A187386 *)
PROG
(PARI) vector(120, n, floor(n*(1 + sqrt(2) + sqrt(3)))) \\ G. C. Greubel, Aug 19 2018
(Magma) [Floor(n*(1 + Sqrt(2) + Sqrt(3))): n in [1..120]]; // G. C. Greubel, Aug 19 2018
CROSSREFS
Cf. A187386.
Sequence in context: A311154 A311155 A311156 * A311157 A311158 A311159
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
STATUS
approved