login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A187388
Floor(s*n), where s=1+sqrt(6)-sqrt(5); complement of A187387.
2
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109
OFFSET
1,2
COMMENTS
A187387 and A187388 are the Beatty sequences based on r=1+sqrt(3)+sqrt(2) and s=1+sqrt(3)-sqrt(2); 1/r+1/s=1.
FORMULA
a(n)=floor(s*n), where s=1+sqrt(6)-sqrt(5).
MATHEMATICA
k=6; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187387 *)
Table[Floor[s*n], {n, 1, 80}] (* A187388 *)
With[{c=1+Sqrt[6]-Sqrt[5]}, Table[Floor[c n], {n, 120}]] (* Harvey P. Dale, Jul 27 2023 *)
CROSSREFS
Cf. A187387.
Sequence in context: A037465 A157846 A285126 * A232012 A029596 A039160
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
STATUS
approved