login
A187390
a(n) = floor(s*n), where s = 1 + sqrt(7) - sqrt(6); complement of A187389.
3
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 116, 117, 118, 119
OFFSET
1,2
COMMENTS
A187389 and A187390 are the Beatty sequences based on r=1+sqrt(7)+sqrt(6) and s=1+sqrt(7)-sqrt(6); 1/r+1/s=1.
FORMULA
a(n) = floor(s*n), where s=1+sqrt(7)-sqrt(6).
MATHEMATICA
k=7; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
Table[Floor[r*n], {n, 1, 80}] (* A187389 *)
Table[Floor[s*n], {n, 1, 80}] (* A187390 *)
With[{c=1+Sqrt[7]-Sqrt[6]}, Floor[c*Range[100]]] (* Harvey P. Dale, Nov 29 2013 *)
CROSSREFS
Cf. A187389.
Sequence in context: A108586 A184522 A194386 * A039215 A047253 A248910
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 09 2011
STATUS
approved