%I #10 Dec 05 2018 09:47:11
%S 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20,21,22,23,25,26,27,28,29,
%T 31,32,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,51,52,53,55,56,57,
%U 58,59,61,62,63,64,65,66,68,69,70,71,72,74,75,76,77,78,80,81,82,83,84,86,87,88,89,90,92,93,94,95,96,98,99,100,101,102,104,105,106,107,108,110,111,112,113,114,116,117,118,119
%N a(n) = floor(s*n), where s = 1 + sqrt(7) - sqrt(6); complement of A187389.
%C A187389 and A187390 are the Beatty sequences based on r=1+sqrt(7)+sqrt(6) and s=1+sqrt(7)-sqrt(6); 1/r+1/s=1.
%F a(n) = floor(s*n), where s=1+sqrt(7)-sqrt(6).
%t k=7; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
%t Table[Floor[r*n],{n,1,80}] (* A187389 *)
%t Table[Floor[s*n],{n,1,80}] (* A187390 *)
%t With[{c=1+Sqrt[7]-Sqrt[6]},Floor[c*Range[100]]] (* _Harvey P. Dale_, Nov 29 2013 *)
%Y Cf. A187389.
%K nonn
%O 1,2
%A _Clark Kimberling_, Mar 09 2011