|
|
A047253
|
|
Numbers that are congruent to {1, 2, 3, 4, 5} mod 6.
|
|
16
|
|
|
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers that are not divisible by 6. - Benoit Cloitre, Jul 11 2009
More generally the sequence a(n,m) of numbers not divisible by some fixed integer m >= 2 is given by a(n,m) = n - 1 + floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
A122841(a(n)) = 0. - Reinhard Zumkeller, Nov 10 2013
|
|
LINKS
|
Ivan Panchenko, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
|
|
FORMULA
|
a(n) = 5 + a(n-5).
G.f.: x*(1+x)*(1+x+x^2)*(x^2-x+1) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ).
a(n) = n - 1 + floor((n+4)/5). - Benoit Cloitre, Jul 11 2009
|
|
MATHEMATICA
|
Select[Table[n, {n, 200}], Mod[#, 6]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011*)
|
|
PROG
|
(PARI) a(n)= 1+n+n\5
(PARI) a(n)=n-1+floor((n+4)/5) \\ Benoit Cloitre, Jul 11 2009
(Haskell)
a047253 n = n + n `div` 5
a047253_list = [1..5] ++ map (+ 6) a047253_list
-- Reinhard Zumkeller, Nov 10 2013
|
|
CROSSREFS
|
Cf. A097325.
Sequence in context: A194386 A187390 A039215 * A248910 A254278 A204878
Adjacent sequences: A047250 A047251 A047252 * A047254 A047255 A047256
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Extended by R. J. Mathar, Oct 18 2008
|
|
STATUS
|
approved
|
|
|
|