Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #8 Jul 27 2023 10:30:42
%S 1,2,3,4,6,7,8,9,10,12,13,14,15,16,18,19,20,21,23,24,25,26,27,29,30,
%T 31,32,33,35,36,37,38,40,41,42,43,44,46,47,48,49,50,52,53,54,55,57,58,
%U 59,60,61,63,64,65,66,67,69,70,71,72,74,75,76,77,78,80,81,82,83,84,86,87,88,89,91,92,93,94,95,97,98,99,100,101,103,104,105,106,107,109
%N Floor(s*n), where s=1+sqrt(6)-sqrt(5); complement of A187387.
%C A187387 and A187388 are the Beatty sequences based on r=1+sqrt(3)+sqrt(2) and s=1+sqrt(3)-sqrt(2); 1/r+1/s=1.
%F a(n)=floor(s*n), where s=1+sqrt(6)-sqrt(5).
%t k=6; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);
%t Table[Floor[r*n],{n,1,80}] (* A187387 *)
%t Table[Floor[s*n],{n,1,80}] (* A187388 *)
%t With[{c=1+Sqrt[6]-Sqrt[5]},Table[Floor[c n],{n,120}]] (* _Harvey P. Dale_, Jul 27 2023 *)
%Y Cf. A187387.
%K nonn
%O 1,2
%A _Clark Kimberling_, Mar 09 2011