login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pascal-(1,4,1) array.
12

%I #34 Sep 08 2022 08:45:09

%S 1,1,1,1,6,1,1,11,11,1,1,16,46,16,1,1,21,106,106,21,1,1,26,191,396,

%T 191,26,1,1,31,301,1011,1011,301,31,1,1,36,436,2076,3606,2076,436,36,

%U 1,1,41,596,3716,9726,9726,3716,596,41,1,1,46,781,6056,21746,33876,21746,6056,781,46,1

%N Pascal-(1,4,1) array.

%C One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016861, A081587, A081588. Coefficients of the row polynomials in the Newton basis are given by A013612.

%H Vincenzo Librandi, <a href="/A081579/b081579.txt">Rows n = 0..100, flattened</a>

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

%F Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 4*T(n-1, k-1) + T(n-1, k).

%F Rows are the expansions of (1+4*x)^k/(1-x)^(k+1).

%F From _Philippe Deléham_, Mar 15 2014: (Start)

%F Riordan array (1/(1-x), x*(1+4*x)/(1-x)).

%F Sum_{k=0..n} T(n, k) = A063727(n). (End)

%F E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(5*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 10*x + 25*x^2/2) = 1 + 11*x + 46*x^2/2! + 106*x^3/3! + 191*x^4/4! + 301*x^5/5! + .... - _Peter Bala_, Mar 05 2017

%F From _G. C. Greubel_, May 26 2021: (Start)

%F T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 4.

%F T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 4. (End)

%e Square array begins as:

%e 1, 1, 1, 1, 1, ... A000012;

%e 1, 6, 11, 16, 21, ... A016861;

%e 1, 11, 46, 106, 191, ... A081587;

%e 1, 16, 106, 396, 1011, ... A081588;

%e 1, 21, 191, 1011, 3606, ...

%e As triangle this begins:

%e 1;

%e 1, 1;

%e 1, 6, 1;

%e 1, 11, 11, 1;

%e 1, 16, 46, 16, 1;

%e 1, 21, 106, 106, 21, 1;

%e 1, 26, 191, 396, 191, 26, 1;

%e 1, 31, 301, 1011, 1011, 301, 31, 1;

%e 1, 36, 436, 2076, 3606, 2076, 436, 36, 1;

%e 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1;

%e 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - _Philippe Deléham_, Mar 15 2014

%t Table[Hypergeometric2F1[-k, k-n, 1, 5], {n,0,12}, {k,0,n}]//Flatten (* _Jean-François Alcover_, May 24 2013 *)

%o (Magma)

%o A081579:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;

%o [A081579(n,k,4): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 26 2021

%o (Sage) flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 26 2021

%Y Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

%Y Cf. A016861, A063727, A081587, A081588.

%K easy,nonn,tabl

%O 0,5

%A _Paul Barry_, Mar 23 2003