Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 23 2024 22:05:59
%S 0,0,1,0,1,1,0,1,3,2,0,1,5,8,3,0,1,7,20,21,5,0,1,9,38,75,55,8,0,1,11,
%T 62,189,275,144,13,0,1,13,92,387,905,1000,377,21,0,1,15,128,693,2305,
%U 4256,3625,987,34,0,1,17,170,1131,4955,13392,19837,13125,2584,55
%N Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.
%C Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2) where a(0) = 0 and a(1) = 1.
%H G. C. Greubel, <a href="/A081576/b081576.txt">Antidiagonal rows n = 0..50, flattened</a>
%F Rows are successive binomial transforms of F(n).
%F T(n, k) = ( ( (2*n + 1 + sqrt(5))/2 )^k - ( (2*n + 1 - sqrt(5))/2 )^k )/sqrt(5).
%F From _G. C. Greubel_, May 26 2021: (Start)
%F T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*n^(k-j) with T(0, k) = Fibonacci(k) (square array).
%F T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*(n-k)^(k-j) (antidiagonal triangle). (End)
%e Square array begins as:
%e 0, 1, 1, 2, 3, 5, 8, ... A000045;
%e 0, 1, 3, 8, 21, 55, 144, ... A001906;
%e 0, 1, 5, 20, 75, 275, 1000, ... A030191;
%e 0, 1, 7, 38, 189, 905, 4256, ... A099453;
%e 0, 1, 9, 62, 387, 2305, 13392, ... A081574;
%e 0, 1, 11, 92, 693, 4955, 34408, ... A081575;
%e 0, 1, 13, 128, 1131, 9455, 76544, ...
%e The antidiagonal triangle begins as:
%e 0;
%e 0, 1;
%e 0, 1, 1;
%e 0, 1, 3, 2;
%e 0, 1, 5, 8, 3;
%e 0, 1, 7, 20, 21, 5;
%e 0, 1, 9, 38, 75, 55, 8;
%e 0, 1, 11, 62, 189, 275, 144, 13;
%t T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}] //Flatten (* _G. C. Greubel_, May 26 2021 *)
%o (Magma)
%o A081576:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >;
%o [A081576(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 26 2021
%o (Sage)
%o def A081576(n,k): return sum( binomial(k,j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) )
%o flatten([[A081576(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 26 2021
%Y Array row n: A000045 (n=0), A001906 (n=1), A030191 (n=2), A099453 (n=3), A081574 (n=4), A081575 (n=5).
%Y Array columns k: A005408 (k=3), A077588 (k=4).
%Y Cf. A028387, A081573, A081574, A081575.
%K easy,nonn,tabl
%O 0,9
%A _Paul Barry_, Mar 22 2003