The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099453 Expansion of 1/(1 - 7*x + 11*x^2). 11
 1, 7, 38, 189, 905, 4256, 19837, 92043, 426094, 1970185, 9104261, 42057792, 194257673, 897167999, 4143341590, 19134543141, 88365044497, 408075336928, 1884511869029, 8702754376995, 40189650079646, 185597252410577, 857094615997933, 3958092535469184, 18278606972307025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Associated to the knot 8_12 by the modified Chebyshev transform A(x)-> (1/(1+x^2)^2)*A(x/(1+x^2)). See A099454 and A099455. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Dror Bar-Natan, The Rolfsen Knot Table. S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014. J. Pan, Multiple Binomial Transforms and Families of Integer Sequences , J. Int. Seq. 13 (2010), 10.4.2, F^(3). Index entries for linear recurrences with constant coefficients, signature (7,-11). FORMULA a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-11)^k*7^(n-2k). a(n) = ((7+sqrt(5))^n - (7-sqrt(5))^n)/(2^n*sqrt(5)), n > 0. Binomial transform of A030191 (Scaled Chebyshev U-polynomial evaluated at sqrt(5)/2); 3rd binomial transform of Fibonacci(n). - Creighton Dement, Apr 19 2005 a(n) = 7*a(n-1) - 11*a(n-2), n >= 2. - Vincenzo Librandi, Mar 18 2011 E.g.f.: exp(7*x/2)*(5*cosh(sqrt(5)*x/2) + 7*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, May 13 2024 MATHEMATICA LinearRecurrence[{7, -11}, {1, 7}, 30] (* G. C. Greubel, May 21 2019 *) PROG (Sage) [lucas_number1(n, 7, 11) for n in range(1, 30)] # Zerinvary Lajos, Apr 23 2009 (PARI) Vec(1/(1-7*x+11*x^2) + O(x^30)) \\ Michel Marcus, Sep 09 2017 (Magma) I:=[1, 7]; [n le 2 select I[n] else 7*Self(n-1) -11*Self(n-2): n in [1..30]]; // G. C. Greubel, May 21 2019 (GAP) a:=[1, 7];; for n in [3..30] do a[n]:=7*a[n-1]-11*a[n-2]; od; a; # G. C. Greubel, May 21 2019 CROSSREFS Cf. A030191, A099454, A099455. Sequence in context: A296769 A241524 A291822 * A292535 A026763 A217340 Adjacent sequences: A099450 A099451 A099452 * A099454 A099455 A099456 KEYWORD easy,nonn AUTHOR Paul Barry, Oct 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 05:17 EDT 2024. Contains 373393 sequences. (Running on oeis4.)