login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144287 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) = Fibonacci rabbit sequence number n coded in base k. 12
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 22, 5, 1, 5, 17, 93, 181, 8, 1, 6, 26, 276, 2521, 5814, 13, 1, 7, 37, 655, 17681, 612696, 1488565, 21, 1, 8, 50, 1338, 81901, 18105620, 4019900977, 12194330294, 34, 1, 9, 65, 2457, 289045, 255941280, 1186569930001, 6409020585966267, 25573364166211253, 55 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Alois P. Heinz, Antidiagonals n = 1..16, flattened

H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.

FORMULA

See program.

EXAMPLE

Square array begins:

  1,   1,    1,     1,     1,  ...

  1,   2,    3,     4,     5,  ...

  2,   5,   10,    17,    26,  ...

  3,  22,   93,   276,   655,  ...

  5, 181, 2521, 17681, 81901,  ...

MAPLE

f:= proc(n, b) option remember; `if`(n<2, [n, n], [f(n-1, b)[1]*

       b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]])

    end:

A:= (n, k)-> f(n, k)[1]:

seq(seq(A(n, 1+d-n), n=1..d), d=1..11);

MATHEMATICA

f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; t[n_, k_] := f[n, k][[1]]; Flatten[ Table[t[n, 1+d-n], {d, 1, 11}, {n, 1, d}]] (* Jean-Fran├žois Alcover, translated from Maple, Dec 09 2011 *)

CROSSREFS

Columns k=1-10 give: A000045, A005203, A005205, A320986, A320987, A320988, A320989, A320990, A320991, A061107 and A036299.

Rows n=1-3 give: A000012, A001477, A002522.

Main diagonal gives A144288.

Sequence in context: A106179 A081572 A292630 * A106196 A037027 A182810

Adjacent sequences:  A144284 A144285 A144286 * A144288 A144289 A144290

KEYWORD

base,nice,nonn,tabl

AUTHOR

Alois P. Heinz, Sep 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 1 06:25 EDT 2022. Contains 354952 sequences. (Running on oeis4.)