OFFSET
1,5
LINKS
Alois P. Heinz, Antidiagonals n = 1..16, flattened
H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.
FORMULA
See program.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
2, 5, 10, 17, 26, ...
3, 22, 93, 276, 655, ...
5, 181, 2521, 17681, 81901, ...
MAPLE
f:= proc(n, b) option remember; `if`(n<2, [n, n], [f(n-1, b)[1]*
b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]])
end:
A:= (n, k)-> f(n, k)[1]:
seq(seq(A(n, 1+d-n), n=1..d), d=1..11);
MATHEMATICA
f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; t[n_, k_] := f[n, k][[1]]; Flatten[ Table[t[n, 1+d-n], {d, 1, 11}, {n, 1, d}]] (* Jean-François Alcover, translated from Maple, Dec 09 2011 *)
CROSSREFS
KEYWORD
AUTHOR
Alois P. Heinz, Sep 17 2008
STATUS
approved