login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005205
Coding Fibonacci numbers.
(Formerly M2877)
4
1, 3, 10, 93, 2521, 612696, 4019900977, 6409020585966267, 67040619014505181883304178, 1118048584563024433220786501983631190591549, 195042693446883195450571898296824337898272003171567594807867055549521
OFFSET
1,2
COMMENTS
Binary Fibonacci (or rabbit) sequence A036299, read in base 3, then converted to decimal. - Jonathan Vos Post, Oct 19 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.
EXAMPLE
a(0) = 1 because A036299(0) = "1" and 1 base 3 = 1 base 10.
a(1) = 3 because A036299(1) = "10" and 10 base 3 = 3 base 10.
a(2) = 10 because A036299(2) = "101" and 101 base 3 = 10 base 10.
a(3) = 93 because A036299(3) = "10110" and 10110 base 3 = 93 base 10.
a(4) = 2521 because A036299(4) = "10110101" and 10110101 base 3 = 2521 base 10.
a(5) = 612696 because A036299(5) = "1011010110110" and 1011010110110 base 3 = 612696 base 10.
MAPLE
b:= proc(n) option remember; `if` (n<2, [n, n], [b(n-1)[1] *3^b(n-1)[2] +b(n-2)[1], b(n-1)[2] +b(n-2)[2]]) end: a:= n-> b(n)[1]: seq(a(n), n=1..11); # Alois P. Heinz, Sep 17 2008
MATHEMATICA
b[0] = {1}; b[1] = {1, 0}; b[n_] := b[n] = Join[b[n-1], b[n-2]]; a[n_] := FromDigits[b[n], 3]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 24 2014 *)
CROSSREFS
Column k=3 of A144287.
Sequence in context: A135457 A225505 A073733 * A216450 A181079 A240512
KEYWORD
nonn,base
EXTENSIONS
More terms from Jonathan Vos Post, Oct 19 2007
Corrected (a(4) was missing) and extended by Alois P. Heinz, Sep 17 2008
STATUS
approved