OFFSET
1,2
COMMENTS
Binary Fibonacci (or rabbit) sequence A036299, read in base 3, then converted to decimal. - Jonathan Vos Post, Oct 19 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..16
H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.
EXAMPLE
a(0) = 1 because A036299(0) = "1" and 1 base 3 = 1 base 10.
a(1) = 3 because A036299(1) = "10" and 10 base 3 = 3 base 10.
a(2) = 10 because A036299(2) = "101" and 101 base 3 = 10 base 10.
a(3) = 93 because A036299(3) = "10110" and 10110 base 3 = 93 base 10.
a(4) = 2521 because A036299(4) = "10110101" and 10110101 base 3 = 2521 base 10.
a(5) = 612696 because A036299(5) = "1011010110110" and 1011010110110 base 3 = 612696 base 10.
MAPLE
b:= proc(n) option remember; `if` (n<2, [n, n], [b(n-1)[1] *3^b(n-1)[2] +b(n-2)[1], b(n-1)[2] +b(n-2)[2]]) end: a:= n-> b(n)[1]: seq(a(n), n=1..11); # Alois P. Heinz, Sep 17 2008
MATHEMATICA
b[0] = {1}; b[1] = {1, 0}; b[n_] := b[n] = Join[b[n-1], b[n-2]]; a[n_] := FromDigits[b[n], 3]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 24 2014 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
More terms from Jonathan Vos Post, Oct 19 2007
Corrected (a(4) was missing) and extended by Alois P. Heinz, Sep 17 2008
STATUS
approved