Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2877 #34 Oct 27 2023 05:56:03
%S 1,3,10,93,2521,612696,4019900977,6409020585966267,
%T 67040619014505181883304178,
%U 1118048584563024433220786501983631190591549,195042693446883195450571898296824337898272003171567594807867055549521
%N Coding Fibonacci numbers.
%C Binary Fibonacci (or rabbit) sequence A036299, read in base 3, then converted to decimal. - _Jonathan Vos Post_, Oct 19 2007
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A005205/b005205.txt">Table of n, a(n) for n = 1..16</a>
%H H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., <a href="http://www.fq.math.ca/Scanned/15-4/gould.pdf">Sequences associated with t-ary coding of Fibonacci's rabbits</a>, Fib. Quart., 15 (1977), 311-318.
%e a(0) = 1 because A036299(0) = "1" and 1 base 3 = 1 base 10.
%e a(1) = 3 because A036299(1) = "10" and 10 base 3 = 3 base 10.
%e a(2) = 10 because A036299(2) = "101" and 101 base 3 = 10 base 10.
%e a(3) = 93 because A036299(3) = "10110" and 10110 base 3 = 93 base 10.
%e a(4) = 2521 because A036299(4) = "10110101" and 10110101 base 3 = 2521 base 10.
%e a(5) = 612696 because A036299(5) = "1011010110110" and 1011010110110 base 3 = 612696 base 10.
%p b:= proc(n) option remember; `if` (n<2, [n, n], [b(n-1)[1] *3^b(n-1)[2] +b(n-2)[1], b(n-1)[2] +b(n-2)[2]]) end: a:= n-> b(n)[1]: seq(a(n), n=1..11); # _Alois P. Heinz_, Sep 17 2008
%t b[0] = {1}; b[1] = {1, 0}; b[n_] := b[n] = Join[b[n-1], b[n-2]]; a[n_] := FromDigits[b[n], 3]; Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Apr 24 2014 *)
%Y Cf. A005203, A036299.
%Y Column k=3 of A144287.
%K nonn,base
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Jonathan Vos Post_, Oct 19 2007
%E Corrected (a(4) was missing) and extended by _Alois P. Heinz_, Sep 17 2008