The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124152 a(n) = Fibonacci(6, n). 5
 0, 8, 70, 360, 1292, 3640, 8658, 18200, 34840, 61992, 104030, 166408, 255780, 380120, 548842, 772920, 1065008, 1439560, 1912950, 2503592, 3232060, 4121208, 5196290, 6485080, 8017992, 9828200, 11951758, 14427720, 17298260, 20608792, 24408090, 28748408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA From Colin Barker, Apr 06 2017: (Start) G.f.: 2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6. a(n) = n*(3 + 4*n^2 + n^4). a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5. (End) MAPLE with(combinat, fibonacci):seq(fibonacci(6, i), i=0..35); MATHEMATICA LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 8, 70, 360, 1292, 3640}, 40] (* Harvey P. Dale, Apr 18 2019 *) PROG (Sage) [lucas_number1(6, n, -1) for n in range(0, 30)] # Zerinvary Lajos, May 16 2009 (PARI) concat(0, Vec(2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Apr 06 2017 CROSSREFS Cf. A117715 formatted as a triangular array: row 7. Cf. A000045. Sequence in context: A335114 A226597 A209074 * A293069 A056631 A190560 Adjacent sequences: A124149 A124150 A124151 * A124153 A124154 A124155 KEYWORD nonn,easy AUTHOR Zerinvary Lajos, Dec 01 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 17:51 EDT 2023. Contains 361599 sequences. (Running on oeis4.)