|
|
A124152
|
|
a(n) = Fibonacci(6, n).
|
|
5
|
|
|
0, 8, 70, 360, 1292, 3640, 8658, 18200, 34840, 61992, 104030, 166408, 255780, 380120, 548842, 772920, 1065008, 1439560, 1912950, 2503592, 3232060, 4121208, 5196290, 6485080, 8017992, 9828200, 11951758, 14427720, 17298260, 20608792, 24408090, 28748408
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
|
|
FORMULA
|
From Colin Barker, Apr 06 2017: (Start)
G.f.: 2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6.
a(n) = n*(3 + 4*n^2 + n^4).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
|
|
MAPLE
|
with(combinat, fibonacci):seq(fibonacci(6, i), i=0..35);
|
|
MATHEMATICA
|
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 8, 70, 360, 1292, 3640}, 40] (* Harvey P. Dale, Apr 18 2019 *)
|
|
PROG
|
(Sage) [lucas_number1(6, n, -1) for n in range(0, 30)] # Zerinvary Lajos, May 16 2009
(PARI) concat(0, Vec(2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Apr 06 2017
|
|
CROSSREFS
|
Cf. A117715 formatted as a triangular array: row 7.
Cf. A000045.
Sequence in context: A335114 A226597 A209074 * A293069 A056631 A190560
Adjacent sequences: A124149 A124150 A124151 * A124153 A124154 A124155
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Zerinvary Lajos, Dec 01 2006
|
|
STATUS
|
approved
|
|
|
|