login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097508 Differences between floor(n*sqrt(2)) and n. 4
0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 31, 31, 31 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

a(2*n) = 2*a(n) + A197879(n). - Robert Israel, Aug 21 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Heinz H. Bauschke, Minh N. Dao, Scott B. Lindstrom, The Douglas-Rachford algorithm for a hyperplane and a doubleton, arXiv:1804.08880 [math.OC], 2018.

M. Celaya, F. Ruskey, Morphic Words and Nested Recurrence Relations, arXiv preprint arXiv:1307.0153 [math.CO], 2013.

FORMULA

a(n) = (floor(n / cos(45 degrees))) - n.

a(n) = A001951(n)-n. - R. J. Mathar, Sep 19 2010

a(n) = floor((sqrt(2)-1)*n). [Celaya-Ruskey]. - N. J. A. Sloane, Nov 14 2013

MAPLE

seq(floor(n*sqrt(2)) - n, n = 0 .. 100); # Robert Israel, Aug 21 2014

MATHEMATICA

Table[Floor[n Sqrt[2]]-n, {n, 0, 80}] (* Harvey P. Dale, Dec 04 2014 *)

PROG

(PARI) a(n)=sqrtint(2*n^2)-n \\ Charles R Greathouse IV, Sep 02 2015

(MAGMA) [Floor(n*Sqrt(2)) - n: n in [0..100]]; // G. C. Greubel, Mar 27 2018

CROSSREFS

Cf. A001951, A197879.

Sequence in context: A172476 A172267 A231151 * A244225 A109964 A247366

Adjacent sequences:  A097505 A097506 A097507 * A097509 A097510 A097511

KEYWORD

easy,nonn

AUTHOR

Odimar Fabeny, Aug 26 2004

EXTENSIONS

Extended by R. J. Mathar, Sep 19 2010

Definition edited by Robert Israel, Aug 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 14:18 EDT 2019. Contains 321497 sequences. (Running on oeis4.)