This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097508 Differences between floor(n*sqrt(2)) and n. 4
 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 31, 31, 31 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS a(2*n) = 2*a(n) + A197879(n). - Robert Israel, Aug 21 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Heinz H. Bauschke, Minh N. Dao, Scott B. Lindstrom, The Douglas-Rachford algorithm for a hyperplane and a doubleton, arXiv:1804.08880 [math.OC], 2018. M. Celaya, F. Ruskey, Morphic Words and Nested Recurrence Relations, arXiv preprint arXiv:1307.0153 [math.CO], 2013. FORMULA a(n) = (floor(n / cos(45 degrees))) - n. a(n) = A001951(n)-n. - R. J. Mathar, Sep 19 2010 a(n) = floor((sqrt(2)-1)*n). [Celaya-Ruskey]. - N. J. A. Sloane, Nov 14 2013 MAPLE seq(floor(n*sqrt(2)) - n, n = 0 .. 100); # Robert Israel, Aug 21 2014 MATHEMATICA Table[Floor[n Sqrt[2]]-n, {n, 0, 80}] (* Harvey P. Dale, Dec 04 2014 *) PROG (PARI) a(n)=sqrtint(2*n^2)-n \\ Charles R Greathouse IV, Sep 02 2015 (MAGMA) [Floor(n*Sqrt(2)) - n: n in [0..100]]; // G. C. Greubel, Mar 27 2018 CROSSREFS Cf. A001951, A197879. Sequence in context: A172476 A172267 A231151 * A244225 A109964 A247366 Adjacent sequences:  A097505 A097506 A097507 * A097509 A097510 A097511 KEYWORD easy,nonn AUTHOR Odimar Fabeny, Aug 26 2004 EXTENSIONS Extended by R. J. Mathar, Sep 19 2010 Definition edited by Robert Israel, Aug 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 14:18 EDT 2019. Contains 321497 sequences. (Running on oeis4.)