login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097505
Triangle read by rows: T(n,k) = Sum_{j=1..k} Prime(n+j-1).
1
2, 3, 8, 5, 12, 23, 7, 18, 31, 48, 11, 24, 41, 60, 83, 13, 30, 49, 72, 101, 132, 17, 36, 59, 88, 119, 156, 197, 19, 42, 71, 102, 139, 180, 223, 270, 23, 52, 83, 120, 161, 204, 251, 304, 363, 29, 60, 97, 138, 181, 228, 281, 340, 401, 468, 31, 68, 109, 152, 199, 252, 311, 372, 439, 510, 583
OFFSET
1,1
FORMULA
T(n,k) = A007504(n+k) - A007504(n-1).
T(n,0) = A000040(n).
T(n,1) = A001043(n) for n>1.
T(n,2) = A034961(n) for n>1.
MAPLE
seq(seq( sum(ithprime(n+j-1), j=1..k), k=1..n), n=1..12); # G. C. Greubel, Jan 19 2020
MATHEMATICA
Table[Sum[Prime[n+j-1], {j, k}], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jan 19 2020 *)
PROG
(PARI) T(n, k) = sum(j=1, k, prime(n+j-1)); \\ G. C. Greubel, Jan 19 2020
(Magma) [&+[NthPrime(n+j-1): j in [1..k]] : k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 19 2020
(Sage) [[sum(nth_prime(n+j-1) for j in (1..k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jan 19 2020
CROSSREFS
Sequence in context: A249154 A262351 A294211 * A343072 A352844 A095168
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 26 2004
STATUS
approved