Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 08 2022 08:45:14
%S 2,3,8,5,12,23,7,18,31,48,11,24,41,60,83,13,30,49,72,101,132,17,36,59,
%T 88,119,156,197,19,42,71,102,139,180,223,270,23,52,83,120,161,204,251,
%U 304,363,29,60,97,138,181,228,281,340,401,468,31,68,109,152,199,252,311,372,439,510,583
%N Triangle read by rows: T(n,k) = Sum_{j=1..k} Prime(n+j-1).
%H G. C. Greubel, <a href="/A097505/b097505.txt">Rows n = 1..100 of triangle, flattened</a>
%F T(n,k) = A007504(n+k) - A007504(n-1).
%F T(n,0) = A000040(n).
%F T(n,1) = A001043(n) for n>1.
%F T(n,2) = A034961(n) for n>1.
%p seq(seq( sum(ithprime(n+j-1), j=1..k), k=1..n), n=1..12); # _G. C. Greubel_, Jan 19 2020
%t Table[Sum[Prime[n+j-1], {j,k}], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Jan 19 2020 *)
%o (PARI) T(n,k) = sum(j=1,k, prime(n+j-1)); \\ _G. C. Greubel_, Jan 19 2020
%o (Magma) [&+[NthPrime(n+j-1): j in [1..k]] : k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jan 19 2020
%o (Sage) [[sum(nth_prime(n+j-1) for j in (1..k)) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jan 19 2020
%K nonn,tabl
%O 1,1
%A _Reinhard Zumkeller_, Aug 26 2004